ИК-спектры измеряют для газообразных, жидких и твердых соединений, а также их растворов в различных растворителях.



Принцип метода

Инфракрасная спектроскопия (ИК спектроскопия), раздел молекулярной оптической спектроскопии, изучающий спектры поглощения и отражения электромагнитного излучения в ИК области.

 ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геом. строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений.

Теоретические основы метода

Атомы в молекуле испытывают непрерывные колебания, а сама молекула вращается как целое, поэтому у нее возникают новые энергетические уровни, отсутствующие в изолированных атомах Молекула может находиться в нескольких энергетических состояниях с большей (E2) или меньшей (E1) колебательной энергией. Эти энергетические состояния называют квантованными. Поглощение кванта света с энергией Е, равной E2 – E1, переводит молекулу из низшего энергетического состояния в более высокое. Это называют возбуждением молекулы.

В результате атомы, связанные друг с другом в молекуле, начинают более интенсивно колебаться относительно некоторых исходных положений. Если рассматривать молекулу как систему из атомов-шариков, сцепленных между собой пружинками, то пружинки сжимаются и растягиваются, вдобавок изгибаются.

Хотя ИК-спектр является характеристикой всей молекулы, оказывается, что некоторые группы атомов имеют полосы поглощения при определенной частоте независимо от структуры остальной части молекулы. Эти полосы, которые называют характеристическими, несут информацию о структурных элементах молекулы.

Имеются таблицы характеристических частот, по которым многие полосы ИК-спектр могут быть связаны с определенными функциональными группами, входящими в состав молекулы (Приложение). Характеристическими будут колебания групп, содержащих легкий атом водорода (С–Н, О–Н, N–Н), колебания групп с кратными связями (С=С, С=N, С=O) и т. д. Такие функциональные группы проявляются в диапазоне спектра от 4000 до 1600 см–1.

Область спектра от 1300 до 625 cм–1 известна как область «отпечатков пальцев». Сюда попадают полосы поглощения, отвечающие колебаниям групп С–С, С–О, С–N, а также деформационные колебания.

Инфракрасная спектроскопия позволяет идентифицировать пространственные и конформационные изомеры, изучать внутри- и межмолекулярные взаимодействия, характер химических связей, распределение зарядов в молекулах, фазовые превращения, кинетику химических реакций, регистрировать короткоживущие (время жизни до 10-6 с) частицы.

Приборы, аппаратура

Для регистрации спектров используют классические спектрофотометры и фурье-спектрометры.

Основные части классического спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с веществом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из различных материалов (LiF, NaCl, KCl, CsF и др.)

Работа прибора по двух лучевой схеме основана на нулевом методе. Радиация от источника излучения 1 направляется с помощью зеркал 2 - 5 по двум каналам: в одном канале (I) помещается исследуемый образец (6), в другом (II) - фотометрический клин (7) и образец сравнения (8).

С помощью прерывателя (9) пучки света из каналов I и II попеременно проходят через диспергирующую систему монохроматора, образуемую призмой 10 из солей LiF, NaCl или KBr, разлагаются в спектр и поступают на приемник радиации болометр. Когда интенсивность пучков в обоих каналах одинакова, на болометр поступает постоянная тепловая радиация и сигнал на входе усилителя не возникает. При наличии поглощения, на болометр падают лучи разной интенсивности и на нем возникает переменный сигнал. Этот сигнал после усиления смещает фотометрический клин, сводя до нуля разность поглощения образца и фотометрического клина. Фотометрический клин механически связан с пером, перо регистрирует величину поглощения.

Достоинства приборов классической схемы: простота конструкции, относительная дешевизна. Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой инфракрасной области; сравнительно невысокая разрешающая способность (до 0,1 см-1), длительная (в течение нескольких минут) регистрация спектров.

В фурье-спектрометрах отсутствуют входная и выходная щели, а основной элемент - интерферометр. Поток излучения от источника делится на два луча, которые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков.

Блок-схема фурье-спектрометра:

1 – источник излучения; 2 – прерыватель; 3 – светоделитель; 4 – подвижное зеркало; 5 – неподвижное зеркало; 6 – система линз; 7 – кюветное отделение; 8 – детектор; 9 – аналого-цифровой преобразователь; 10 – контроллер; 11 – компьютер; 12 – цифровая печать; 13 – дисковая память.

Первоначальный сигнал зависит от энергии источника излучения и от поглощения образца и имеет вид суммы большого числа гармонических составляющих. Для получения спектра в обычной форме производится соответствующее фурье-преобразование с помощью встроенной ЭВМ.

Достоинства фурье-спектрометра: высокое отношение сигнал: шум, возможность работы в широком диапазоне длин волн без смены диспергирующего элемента, быстрая (за секунды и доли секунд) регистрация спектра, высокая разрешающая способность (до 0,001 см-1). Недостатки: сложность изготовления и высокая стоимость.

Подготовку твердых образцов для регистрации их инфракрасных спектров осуществляют двумя способами:

1. Суспензионный метод представляет собой растирание образца до мелкодисперсного состояния (размер частиц 2-7 мкм) и приготовление суспензии в иммерсионной жидкости с близким к образцу показателем преломления. При этом в качестве матрицы обычно используют вазелиновое масло, фторированные или хлорированные масла. Полученная полупрозрачная паста наносится с помощью шпателя на окно из оптического материала в виде тонкой равномерной пленки.

2. Прессование таблеток с галогенидами щелочных металлов – основной и наиболее универсальный способ пробоподготовки. Он заключается в тщательном перемешивании в агатовой ступке тонкоизмельченного образца с порошком KBr и последующем прессовании смеси в пресс - форме, в результате чего получается прозрачная или полупрозрачная таблетка. Для получения качественных спектров степень диспергирования вещества должна достигать размера частиц 2-7 мкм (сопоставимо с длиной волны инфракрасного излучения).

Применение

Инфракрасная спектроскопия широко применяют для анализа смесей и идентификация чистых веществ. Количественный анализ основан на зависимости интенсивности полос поглощения от концентрации вещества в пробе. При этом о количестве вещества судят не по отдельным полосам поглощения, а по спектральным кривым в целом в широком диапазоне длин волн. Если число компонентов невелико (4-5), то удается математически выделить их спектры даже при значительном перекрывании последних.

Для идентификации новых веществ (молекулы которых могут содержать до 100 атомов) применяют системы искусственного интеллекта. В этих системах на основе спектроструктурных корреляций генерируются молекулы структуры, затем строятся их теоретические спектры, которые сравниваются с экспериментальными данными.

ИК-спектры измеряют для газообразных, жидких и твердых соединений, а также их растворов в различных растворителях.


Дата добавления: 2018-05-31; просмотров: 130; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!