Стеки в вычислительных системах



Полустатические структуры данных

Характерные особенности полустатических структур

Полустатические структуры данных характеризуются следующими признаками:

· они имеют переменную длину и простые процедуры ее изменения;

· изменение длины структуры происходит в определенных пределах, не превышая какого-то максимального (предельного) значения.

Если полустатическую структуру рассматривать на логическом уровне, то о ней можно сказать, что это последовательность данных, связанная отношениями линейного списка. Доступ к элементу может осуществляться по его порядковому номеру.

Физическое представление полустатических структур данных в памяти - это обычно последовательность слотов в памяти, где каждый следующий элемент расположен в памяти в следующем слоте (т.е. вектор). Физическое представление может иметь также вид однонаправленного связного списка (цепочки), где каждый следующий элемент адресуется указателем находящемся в текущем элементе. В последнем случае ограничения на длину структуры гораздо менее строгие.

Стеки

Логическая структура стека

Стек - такой последовательный список с переменной длиной, включение и исключение элементов из которого выполняются только с одной стороны списка, называемого вершиной стека. Применяются и другие названия стека - магазин и очередь, функционирующая по принципу LIFO (Last - In - First- Out - "последним пришел - первым исключается"). Примеры стека: винтовочный патронный магазин, тупиковый железнодорожный разъезд для сортировки вагонов.

Основные операции над стеком - включение нового элемента (английское название push - заталкивать) и исключение элемента из стека (англ. pop - выскакивать).

Полезными могут быть также вспомогательные операции:

· определение текущего числа элементов в стеке;

· очистка стека;

· неразрушающее чтение элемента из вершины стека, которое может быть реализовано, как комбинация основных операций:

x:=pop(stack); push(stack,x).

Некоторые авторы рассматривают также операции включения/исключения элементов для середины стека, однако структура, для которой возможны такие операции, не соответствует стеку по определению.

Для наглядности рассмотрим небольшой пример, демонстрирующий принцип включения элементов в стек и исключения элементов из стека. На рис. 4.1 (а,б,с) изображены состояния стека:

· а).пустого;

· б-г).после последовательного включения в него элементов с именами 'A', 'B', 'C';

· д, е).после последовательного удаления из стека элементов 'C' и 'B';

· ж).после включения в стек элемента 'D'.

Рис 4.1. Включение и исключение элементов из стека.

Как видно из рис. 4.1, стек можно представить, например, в виде стопки книг (элементов), лежащей на столе. Присвоим каждой книге свое название, например A,B,C,D... Тогда в момент времени, когда на столе книг нет, про стек аналогично можно сказать, что он пуст, т.е. не содержит ни одного элемента. Если же мы начнем последовательно класть книги одну на другую, то получим стопку книг (допустим, из n книг), или получим стек, в котором содержится n элементов, причем вершиной его будет являться элемент n+1. Удаление элементов из стека осуществляется аналогичным образом т. е. удаляется последовательно по одному элементу, начиная с вершины, или по одной книге из стопки.

Машинное представление стека и реализация операций

При представлении стека в статической памяти для стека выделяется память, как для вектора. В дескрипторе этого вектора кроме обычных для вектора параметров должен находиться также указатель стека - адрес вершины стека. Указатель стека может указывать либо на первый свободный элемент стека, либо на последний записанный в стек элемент. (Все равно, какой из этих двух вариантов выбрать, важно в последствии строго придерживаться его при обработке стека.) В дальнейшем мы будем всегда считать, что указатель стека адресует первый свободный элемент и стек растет в сторону увеличения адресов.

При занесении элемента в стек элемент записывается на место, определяемое указателем стека, затем указатель модифицируется таким образом, чтобы он указывал на следующий свободный элемент (если указатель указывает на последний записанный элемент, то сначала модифицируется указатель, а затем производится запись элемента). Модификация указателя состоит в прибавлении к нему или в вычитании из него единицы (помните, что наш стек растет в сторону увеличения адресов.

Операция исключения элемента состоит в модификации указателя стека (в направлении, обратном модификации при включении) и выборке значения, на которое указывает указатель стека. После выборки слот, в котором размещался выбранный элемент, считается свободным.

Операция очистки стека сводится к записи в указатель стека начального значения - адреса начала выделенной области памяти.

Определение размера стека сводится к вычислению разности указателей: указателя стека и адреса начала области.

Программный модуль, представленный в примере 4.1, иллюстрирует операции над стеком, расширяющимся в сторону уменьшения адресов. Указатель стека всегда указывает на первый свободный элемент.

В примерах 4.1 и 4.3 предполагается, что в модуле будут уточнены определения предельного размера структуры и типа данных для элемента структуры:

{==== Программный пример 4.1 ====} { Стек }

#include<stdlib.h>

#define SIZE 20

 

int *StA;

int top;

voidStackInit(){top=SIZE-1;}

voidStackClr(){top=SIZE-1;}

intStackPush(int a)

{

if (top==-1) return 0;

StA[top]=a;

top--;

return 1;}

IntStackPop(int *a)

{

top++;

if(top==SIZE) return 0;

*a=StA[top];

return 1;

}

IntStackSize()

{

return SIZE-top-1;

}

void main()

{

StA=new int[SIZE];

StackInit();

inti,a;

for(i=0;i<15;i++)

StackPush((i+1)*SIZE);

int n=StackSize();

printf(“Size of Stack: %n\n",n);

for(i=0;i<n;i++)

if(StackPop(&a))

printf(“%d ”,a);

printf("\nSize of Stack: %d\n",StackSize());

}

Стеки в вычислительных системах

Стек является чрезвычайно удобной структурой данных для многих задач вычислительной техники. Наиболее типичной из таких задач является обеспечение вложенных вызовов процедур.

Предположим, имеется процедура A, которая вызывает процедуру B, а та в свою очередь - процедуру C. Когда выполнение процедуры A дойдет до вызова B, процедура A приостанавливается и управление передается на входную точку процедуры B. Когда B доходит до вызова C, приостанавливается B и управление передается на процедуру C. Когда заканчивается выполнение процедуры C, управление должно быть возвращено в B, причем в точку, следующую за вызовом C. При завершении B управление должно возвращаться в A, в точку, следующую за вызовом B. Правильную последовательность возвратов легко обеспечить, если при каждом вызове процедуры записывать адрес возврата в стек. Так, когда процедура A вызывает процедуру B, в стек заносится адрес возврата в A; когда B вызывает C, в стек заносится адрес возврата в B. Когда C заканчивается, адрес возврата выбирается из вершины стека - а это адрес возврата в B. Когда заканчивается B, в вершине стека находится адрес возврата в A, и возврат из B произойдет в A.

В микропроцессорах семейства Intel, как и в большинстве современных процессорных архитектур, поддерживается аппаратный стек. Аппаратный стек расположен в ОЗУ, указатель стека содержится в паре специальных регистров - SS:SP, доступных для программиста. Аппаратный стек расширяется в сторону уменьшения адресов, указатель его адресует первый свободный элемент. Выполнение команд CALL и INT, а также аппаратных прерываний включает в себя запись в аппаратный стек адреса возврата. Выполнение команд RET и IRET включает в себя выборку из аппаратного стека адреса возврата и передачу управления по этому адресу. Пара команд - PUSH и POP - обеспечивает использование аппаратного стека для программного решения других задач.

Системы программирования для блочно-ориентированных языков (PASCAL, C и др.) используют стек для размещения в нем локальных переменных процедур и иных программных блоков. При каждой активизации процедуры память для ее локальных переменных выделяется в стеке; при завершении процедуры эта память освобождается. Поскольку при вызовах процедур всегда строго соблюдается вложенность, то в вершине стека всегда находится память, содержащая локальные переменные активной в данный момент процедуры.

Этот прием делает возможной легкую реализацию рекурсивных процедур. Когда процедура вызывает сама себя, то для всех ее локальных переменных выделяется новая память в стеке, и вложенный вызов работает с собственным представлением локальных переменных. Когда вложенный вызов завершается, занимаемая его переменными область памяти в стеке освобождается и актуальным становится представление локальных переменных предыдущего уровня. За счет этого в языках PASCAL и C любые процедуры/функции могут вызывать сами себя. В языке PL/1, где по умолчанию приняты другие способы размещения локальных переменных, рекурсивная процедура должна быть определена с описателем RECURSIVE - только тогда ее локальные переменные будут размещаться в стеке.

Рекурсия использует стек в скрытом от программиста виде, но все рекурсивные процедуры могут быть реализованы и без рекурсии, но с явным использованием стека. В программном примере 3.17 приведена реализация быстрой сортировки Хоара в рекурсивной процедуре. Программный пример 4.2 показывает, как будет выглядеть другая реализация того же алгоритма.

Очереди FIFO

Логическая структура очереди

Очередью FIFO (First - In - First- Out - "первым пришел - первым исключается").называется такой последовательный список с переменной длиной, в котором включение элементов выполняется только с одной стороны списка (эту сторону часто называют концом или хвостом очереди), а исключение - с другой стороны (называемой началом или головой очереди). Те самые очереди к прилавкам и к кассам, которые мы так не любим, являются типичным бытовым примером очереди FIFO.

Основные операции над очередью - те же, что и над стеком - включение, исключение, определение размера, очистка, неразрушающее чтение.


Дата добавления: 2018-06-01; просмотров: 353; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!