Нейроглия: источники развития, разновидности, микроскопическое и ультрамикроскопическое строение. Функции. Глиальный барьер: строение, значение.



Нейроглияпредставляет собой среду, окружающую нейроциты и выполняющую в нервной ткани опорную, разграничительную, трофическую и защитную функции. Развивается из эктодермы.Избирательность обмена веществ между нервной тканью и кровью обеспечивается, помимо морфологических особенностей самих капилляров ( сплошная эндотелиальная выстилка, плотная базальная мембрана) также и тем, что отростки глиоцитов, прежде всего астроцитов, образуют на поверхности капилляров слой, отграничивающий нейроны от непосредственного соприкосновения с сосудистой стенкой. Таким образом, формируется гематоэнцефалический барьер.

Нейроглия состоит из клеток, которые делятся на два генетически различных вида:

1) Глиоциты (макроглия);

2) Глиальные макрофаги (микроглия).

К макроглии центральной нервной системы относят эпендимоциты, астроциты и олигодендроциты

Эпендимоциты. Они образуют плотный слой клеточных элементов, выстилающих спинномозговой канал и все желудочки мозга. Выполняют пролиферативную, опорную функцию, участвуют в образовании сосудистых сплетений желудочков мозга. Эпендимальные клетки желудочков мозга выполняют функцию гематоэнцефалического барьера. Некоторые эпендимоциты выполняют секреторную функцию участвуя в процессах образования цереброспинальной жидкости и выделяя различные активные вещества прямо в полость мозговых желудочков или кровь.

Астроциты. Они образуют опорный аппарат центральной нервной системы. Различают два вида астроцитов: протоплазматические и волокнистые. Протоплазматические астроциты лежат преимущественно в сером веществе центральной нервной системы и несут разграничительную и трофическую функции. Волокнистые астроциты располагаются главным образом в белом веществе мозга и в совокупности образуют плотную сеть - поддерживающий аппарат мозга. Основная функция астроцитов - опорная и изоляция нейронов от внешних влияний, что необходимо для осуществления специфической деятельности нейронов.

Олигодендроциты. Это самая многочисленная группа клеток нейроглии. Олигодендроциты окружают тела нейронов в центральной и перферической нервной системе, находятся в составе оболочек нервных волокон и в нервных окончаниях.

Олигодендроциты играют значительную роль в образовании оболочек вокруг отростков клеток, при этом они называются нейролеммоцитами (леммоциты - шванновские клетки). В процессе дегенерации и регенерации нервных волокон олигодендроциты выполняют еще одну очень важную функцию - они участвуют в нейронофагии, т.е. удаляют омертвевшие нейроны путем активного поглощения продуктов распада.

К макроглии периферической нервной системе относятся

· шванновские клетки - это специализированные олигодендроциты, синтезирующие миелиновую оболочку миелинизированных волокон. Они отличаются от олигодендроглии тем, что охватывают обычно только один участок отдельного аксона.

· клетки-сателлиты - инкапсулируют нейроны ганглиев спинальных и черепных нервов, регулируя микросреду вокруг этих нейронов аналогично тому, как это делают астроциты.

· микроглия - это мелкие клетки, разбросанные в белом и сером веществе нервной системы. Клетки микроглии являются глиальными макрофагами и выполняют защитную функцию, принимая участие в разнообразных реакциях в ответ на повреждающие факторы.

Глиальный барьер

Гематоэнцефалический барьер (ГЭБ) – физиологический механизм, регулирующий обмен веществ между кровью, спинномозговой жидкостью и мозгом. ГЭБ осуществляет защитные функции, препятствуя проникновению в центральную нервную систему некоторых чужеродных веществ, введенных в кровь, или продуктов нарушенного обмена веществ, образовавшихся в самом организме.

Гемато-энцефалический барьер включает в себя следующие компоненты:

  • эндотелий кровеносных капилляров (с непрерывной выстилкой) — главный компонент гемато-энцефалического барьера. Его клетки связаны мощными плотными соединениями, образование которых индуцируется контактом с астроцитами. Эндотелий препятствует переносу одних веществ, содержит специфические транспортные системы для других и метаболически изменяет третьи, превращая их в соединения, неспособные проникнуть в мозг;
  • базальную мембрану капилляров;
  • периваскулярную пограничную глиальную мембрану из отростков астроцитов.

Нервные волокна: разновидности, микроскопическое и ультрамикроскопическое строение. Функции. Процесс миелинизации. Особенности строения миелиновых волокон центральной и периферической нервной систем. Реакция на травму, регенерация.

Нервные волокна представляют собой отростки нейронов, покрытые глиальными оболочками. Различают два вида нервных волокон - безмиелиновые и миелиновые. Оба вида состоят из центрально лежащего отростка нейрона, окруженного оболочкой из клеток олигодендроглии (в периферической нервной системе они называются шванновскими клетками (нейролеммоцитами).

Миелиновые нервные волокна

Встречаются в ЦНС и периферической нервной системе и характеризуются высокой скоростью проведения нервных импульсов. Они обычно толще безмиелиновых и содержат отростки нейронов большего диаметра. В таком волокне отросток нейрона окружен миелиновой оболочкой, вокруг которой располагается тонкий слой, включающий цитоплазму и ядро нейролеммоцита -нейролемма. Снаружи волокно покрыто базальной мембраной. Участки миелиновой оболочки, в которых сохраняются промежутки между витками миелина, заполненные цитоплазмой нейролеммоцита, имеют вид насечек миелина. Миелиновая оболочка отсутствует в участках, соответствующих границе соседних нейролеммоцитов - узловых перехватах. Рядом с узловым перехватом (паранодальная область) миелиновая оболочка охватывает аксон в виде терминальной пластинчатой манжетки. По длине волокна миелиновая оболочка имеет прерывистый ход; участок между двумя узловыми перехватами (межузловой сегмент) соответствует длине одного нейролеммоцита.

Миенилизация, процесс обложения миелином нервного волокна в период развития организма. Она начинается у зародыша на 5-м месяце внутриутробной жизни. Системы волокон, имеющие одинаковую по сложности функцию, миелинизируются одновременно; чем сложнее функция данной системы, тем волокна ее позднее обкладываются миелином; обложение миелином служит признаком того, что волокно стало деятельным. При рождении ребенка миенилизация далеко еще не закончена: в то время как одни части мозга уже вполне миелинизированы и готовы к функции, другие еще не закончили своего развития. Постепенно развитие миелиновых оболочек происходит во всех отделах, благодаря чему устанавливается связь между различными центрами и в связи с этим развивается интелект ребенка: он начинает узнавать предметы и понимать их значение. Миелинизация главных систем заканчивается на восьмом месяце внеутробной жизни, и с этого момента она продолжается только в отдельных волокнах в течение еще многих лет (наружные слои мозговой коры по некоторымрым данным миелинизируются окончательно лишь к 45 годам жизни).


Дата добавления: 2018-06-01; просмотров: 1704; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!