Развитие костной ткани из мезенхимы (прямой остеогенез).



Развитие костной ткани у эмбриона осуществляется двумя способами:

1) прямой остеогенез – непосредственно из мезенхимы

2) непрямой остеогенез – на месте ранее развившейся из мезенхимы хрящевой модели кости.

Прямойостеогенез–развитие кости из мезенхимы. Этим способом развивается грубоволокнистая (ретикулофиброзная) костная ткань. Характерен при формировании плоских костей (например, костей черепа). Этот процесс наблюдается в основном в течение первого месяца внутриутробного развития и протекает в четыре стадии:

- образованиеостеогенного островка. Происходит очаговое размножение мезенхимных клеток и формирование в этом очаге сосудов (васкуляризация);

 

- остеоидная стадия.Мезенхимные клеткипревращаются в остеобласты, располагающиеся снаружи островка. Остеобласты образуют межклеточное вещество, в которое сами себя замуровывают и остаются в центре островка, превращаясь в остеоциты. Снаружи образуются всё новые и новые остеобласты. Формируются костные балки;

- стадия минерализации остеоида.В этустадию межклеточное вещество пропитывается солями кальция. В результате кальцификации образуются костные балки;

 

- стадии перестройки грубоволокнистой костной ткани в пластинчатую,когда грубоволокнистая костная ткань разрушается остеокластами и на её месте с помощью остеобластов образуются костные пластинки и остеоны.

Развитие костной ткани на месте хряща (непрямой остеогенез).

Развитие костной ткани у эмбриона осуществляется двумя способами:

1) прямой остеогенез – непосредственно из мезенхимы

2) непрямой остеогенез – на месте ранее развившейся из мезенхимы хрящевой модели кости.

Непрямой остеогенез(из хрящевой модели). Сначала, на 2-м месяце эмбриогенеза в местах будущих трубчатых костей из мезенхимы склеротомов сомитов образуется хрящевой зачаток (гиалиновый хрящ, покрытый надхрящницей), который очень быстро принимает форму будущей кости. Затем в области диафиза надхрящница замещается надкостницой, питание хряща нарушается, он погибает и разрушается остеокластами и замещается грубоволокнистойкостной тканью костная манжетка.Затемкостная ткань замещает весь хрящ в диафизе.

 

В центре эпифизов ещё сохраняется нормальный гиалиновый хрящ (зона интактногохряща),однако ближе к диафизу хондроцитынабухают (зона пузырчатого хряща) и разрушаются с помощью остеокластов (зона резорбции хряща)

 

 

Позднее точки окостенения появляются в эпифизах. Эти две зоны окостенения сближаются, а между ними ещё сохраняется метафизарная хрящевая пластинка роста,за счёткоторой длительно, до 18-20 лет продолжается рост костей в длину. К 20 годам хрящевая пластинка истончается и исчезает, рост кости в длину прекращается.

Мышечные ткани: общая характеристика, классификация, строение, функция, регенерация.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма.

Классификация.В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы.

Первая подгруппа- поперечнополосатые мышечные ткани.

Вторая подгруппа – гладкие мышечные ткани.

Согласно генетической классификации (по происхождению), мышечные ткани делят на 4 типа: 1) мезенхимные (развиваются из мезенхимы, находятся во внутренних органах и сосудах); 2) нейральные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 3) соматические (развиваются из миотомов сомитов мезодермы и образуют скелетную мышечную ткань); 4) целомические (развиваются из висцерального листка спланхнотома и образуют сердечную мышечную ткань). Первые два типа относятся к гладким мышечным тканям, остальные – к поперечнополосатым.

Строение клетки мышечной ткани. Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры. Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином. Именно они обеспечивают главное свойство этой структуры - сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин - темные.

Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления - пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, - меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру - определенный тип мышечной ткани. Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие - в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации - восстановления целостности ткани.

Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:

1) осуществление сокращения и расслабления органов;

2) сужение и расширение просвета кровеносных и лимфатических сосудов;

3) обеспечение реакции на действие гормонов и других химических веществ;

4) высокая пластичность и связь процессов возбуждения и сокращения.

5) отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.

6) поддерживает положение тела в пространстве.

7) выполняет функцию защиты органов брюшной полости (от механических воздействий).

8) сердечная мускулатура обеспечивает ритмические сокращения сердца.

9) скелетные мышцы участвуют в актах глотания, формируют голосовые связки.

Регенерация мышечной ткани, ее возможности и формы различны в зависимости от вида этой ткани. Гладкие мышцы, клетки которых обладают митотической и амитотической активностью, при незначительных дефектах могут регенерировать достаточно полно. Значительные участки повреждения гладких мышц замещаются рубцом. Регенерация мышцы сердца человека, так же как и поперечнополосатой мускулатуры, заканчивается рубцеванием дефекта.

Сократительный аппарат поперечнополосатой (исчерченной) мышечной ткани6 ультраструктурная характеристика миофибрилл, строение и значение Т- и L- систем в развитии механизмов мышечного сокращения.

Исчерченная (поперечно-полосатая) мышечная ткань составляет до 40% массы взрослого человека, входит в состав скелетных мышц, мышц языка, гортани и др. Относятся к произвольным мышцам, поскольку их сокращения подчиняются воле человека.

L-система –аналог гладкой ЭПС. Функция:депо ионов Ca, обеспечивает их транспорт в саркоплазме

T-система –это впячивания сарколеммы внутрь мышечного волокна по границе между светлым и темным диском.Функция:обеспечивает проведение возбуждения во внутрь мышечного волокна.


Дата добавления: 2018-06-01; просмотров: 1388; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!