Мембранные структуры клетки, разновидности. Ультрамикроскопическое строение, значение, обновление.



ЦИТОЛОГИЯ И ЭМБРИОЛОГИЯ

Методы исследования в гистологии. Основные принципы и этапы изготовления гистологических препаратов.

Как любая наука гистология располагает своим арсеналом методов исследований:

I. Основной метод — микроскопирование.

А. Световая микроскопия — исследования обычным световым микроскопом.

Б. Специальныеые методы микроскопирования:

- фазовоконтрастный микроскоп (для изуч. живых неокраш-х обьектов)

-темнопольный микроскоп (для изуч. живых неокраш-х обьектов)

-люминесцентный мик-п (для изуч. живых неокраш-х обьектов)

-ультрафиолетовый мик-п (повышает разрешающую способность м-па)

В. Электронная микроскопия:

II. Специальные (немикроскопические) методы:

1.Цито- или гистохимия — суть заключается использовании строгоспецифических химических реакций с светлым конечным продуктом в клетках и тканях для определения количества различных веществ(белков, ферментов, жиров, углеводов и т. д.).

2. Цитофотометрия — метод применяется в комплексе с 1 и дает возможность количественно оценить выявленные цитогистохимическим методом белки, ферменты и т.д.

3. Авторадиография — вводят в организм вещества, содержащие радиоактивные изотопы химических элементов. Эти вещества включаются в обменные процессы в клетках.

4. Метод культивирования клеток и тканей — в питательных средах или в диффузионных камерах, имплантированных в различные ткани организма.

5. Ультрацентрофугирование — фракционирование клеток или субклеточных структур путем центрофугирования в растворах различной плотности.

6. Экспериментальный метод.

7. Метод трансплантации тканей и органов.

Основные этапы приготовления гистологических препаратов:

1. взятие материала;2. фиксация;3. промывка в воде;4. обезвоживание и уплотнение;5. заливка;6. приготовление срезов;7.окрашивание;8. заключение срезов.

Краткая характеристика этапов:

Взятие материала.

Для гистологического исследования берут кусочки органов и тканей величиной не более 1 см³. Материал желательно получать как можно раньше после смерти людей (метод исследования материала трупа человека — аутопсия). С диагностической целью материал для гистологического исследования может забираться у людей прижизненно с помощью специальных инструментов или во время операций(биопсия).

Фиксация.

Фиксация – метод обработки ткани с целью закрепления ее прижизненной структуры. Это достигается путем воздействия на ткань специальных растворов (фиксаторов). Наиболее существенным изменением, происходящим в тканях под воздействием фиксатора, является процесс коагуляции белков. Продолжительность фиксации – от нескольких часов до 1 суток и более в зависимости от свойств фиксатора и характера исследуемого материала.

Промывка в воде.

После фиксации материал промывают (чаще всего в течение нескольких часов в проточной воде) с тем, чтобы избавить его от избытка фиксатора и различных осадков фиксирующих жидкостей.

Изучить с помощью микроскопа такие фиксированные кусочки органов невозможно, т.к. они не прозрачны. Чтобы кусочек органа можно было микроскопировать, его надо разрезать на очень тонкие пластинки – срезы, толщина которых измеряется в микрометрах. Такие срезы получают с помощью специальных приборов – микротомов. Но для того, чтобы резать на микротоме кусочек ткани, ее надо предварительно уплотнить. Это достигается путем пропитывания застывающими жидкостями – расплавленным парафином. Парафин в воде не растворяется, и поэтому промытый после фиксации кусочек ткани необходимо предварительно обезводить, и только затем пропитывать.

Обезвоживание.

Обезвоживание ткани производятся постепенно (чтобы не произошло сморщивания клеток) путем проведения ее через спирты возрастающей крепости: 50º, 60º, 70º, 80º, 90º, 96º, 100º. В каждом спирте кусочки находятся от нескольких часов до 1 суток в зависимости от величины кусочка.

Уплотнение (заливка).

При заливке кусочки предварительно пропитываются теми жидкостями, которые служат растворителями для парафина (ксилол или толуол).

Заливка в парафин. При заливке в парафин кусочки из абсолютного спирта переносятся в смесь абсолютного спирта с хлороформом или ксилолом, взятых поровну, затем чистый ксилол и, наконец, в расплавленный насыщенный раствор парафина в хлороформе, где они находятся в термостате при температуре 37º до 1 суток и более.Окончательная заливка проводится в парафин с добавлением воска, который наливают в специальные бумажные коробочки или стеклянные чашки, а затем эти коробочки или чашки после появления на поверхности парафина пленки, погружают в воду.Происходит полное затвердение парафина. Уплотнения также можно добиться замораживанием кусочка органа (срочная биопсия).

Приготовление срезов.

Срезы с блоков изготовляются на микротоме.В специальных устройствах микротома зажимается парафиновый блок и микротомный нож. Получаются срезы толщиной 5-10 мкм.

Окрашивание.

Изготовленные на микротоме срезы окрашиваются. Перед окраской из парафиновых срезов обязательно удаляют парафин (растворением в ксилоле).Окрашивание необходимо производить для того, чтобы отчетливо выявить под микроскопом тонкие структуры объекта. В неокрашенных срезах большинство структур одинаково преломляет свет, поэтому рассмотреть их не удается.

Выявление на срезе гистологических структур основано на неодинаковом их отношении к красителям. Одни структуры среза вступают в реакцию с кислыми красителями и ими окрашиваются (ацидофильные, оксифильные структуры), другие реагируют с основными красителями и окрашиваются преимущественно ими (базофильные структуры). Некоторые структуры окрашиваются и кислыми и основными красителями.

По окрашиванию определенных гистологических структур различают краски ядерные (окрашивание ядра), цитоплазматические (окрашивающие цитоплазму), и специальные, окрашивающие избирательно определенные структуры.

Ядерные краски – гематоксилин, кармин, сафранин, метиленовая синь, азур, тионин.

Цитоплазматические краски – эозин, пикрофуксин.

Существуют специальные краски и реактивы: судан III (окрашивает жир в оранжевый цвет), осмиевая кислота (импрегнируемый ею жир окрашиватся в черный цвет, орсеин (окрашивает эластические волокна в бурый цвет). Чаще всего для окрашивания гистологических срезов применяется окрашивание раствором гематоксилина (приготовленным по методу Бемера) и 1-2% эозином.

Заключение среза.

Окрашенные и промытые в воде срезы во избежание помутнения обезвоживают в спиртах (70º, 96º), просветляют в карбол-ксилоле, а затем на предметное стекло, где находится срез, помещают каплю бальзама и срез накрывают покровным стеклом. Бальзам представляет собой растворенную в ксилоле смолу одного из видов сосны, растущей в Канаде (канадский бальзам), смолу пихты (сибирский бальзам) или специальную синтетическую среду.

Клетка: определение понятия, общий план строения. Гиалоплазма: химический состав, значение. Органеллы и включения: определение понятий, классификация.

Клетка - элементарная структурная, функциональная и генетическая единица в составе всех растительных и животных организмов.

Гиалоплазма (клеточный сок, цитозоль, клеточный матрикс) - внутренняя среда клетки, на которую приходится до 55% ее общего объема. Она представляет собой сложную прозрачную коллоидную систему, в которой взвешены органеллы и включения, и содержит различные биополимеры: белки, полисахариды, нуклеиновые кислоты, а также ионы.

Компоненты клетки. Каждая клетка состоит из двух основных компонентов - ядра и цитоплазмы. В ядре находятся хромосомы, содержащие генетическую информацию, которая в результате процесса транскрипции постоянно избирательно считывается и направляется в цитоплазму, где она контролирует ход многообразных процессов жизнедеятельности клетки, в частности, сбалансированные процессы синтеза, анаболизма, и разрушения, катаболизма.

Компоненты цитоплазмы. Цитоплазма отделена от внешней (для данной клетки) среды внешней клеточной мембраной (плазмолеммой) и содержит органеллы и включения, погруженные в гиалоплазму (клеточный матрикс).

Органеллы - постоянно присутствующие в цитоплазме структуры, специализированные на выполнении определенных функций в клетке. Они подразделяются на органеллы общего значения испециальные органеллы.

-органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся митохондрии, рибосомы, эндоплазматическая сеть (ЭПС), комплекс Гольджи, лизосомы, пероксисомы, клеточный центр, компоненты цитоскелета;

-специальные органеллы имеются лишь в некоторых клетках и обеспечивают выполнение их специализированных функций. К ним относят реснички, жгутики, микроворсинки, миофибриллы, акросому (спермиев). Специальные органеллы образуются в ходе развития клетки как производные органелл общего значения.

В состав многих органелл входит элементарная биологическая мембрана, поэтому органеллы подразделяют также на мембранные и немембранные. К мембранным органеллам относятся митохондрии, ЭПС, комплекс Гольджи, лизосомы, пероксисомы, к немембранным рибосомы, клеточный центр, реснички, микроворсинки, жгутики, компоненты цитоскелета.

Включения - временные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток.

Подразделяются на несколько типов:

-трофические: лецитин в яйцеклетках; гликоген; липиды, имеются почти во всех клетках;

-секреторные: секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы); секреторные гранулы в эндокринных железах и другие;

-экскреторные: вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев);

-пигментные:меланин;гемоглобин;липофусцин;билирубин и другие.

Помимо структур цитоплазмы, которые можно четко отнести к органеллам или включениям, в ней имеется огромное количество разнообразных транспортных пузырьков, обеспечивающих не только перенос веществ между различными компонентами клетки, но и их частичное преобразование (процессинг) благодаря наличию ферментов в мембране, которая образует их стенку.

Мембранные структуры клетки, разновидности. Ультрамикроскопическое строение, значение, обновление.

Мембранные структуры (компоненты) клетки - совокупное название различных структур цитоплазмы и ядра: плазмолеммы, ряда органелл, включений, транспортных пузырьков, а также ядерной оболочки (кариолеммы), в состав которых входят клеточные мембраны.

Митохондрии

Митохондрии — наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.

У митохондрий присутствует генетический аппарат (митохондриальная ДНК) и синтетический аппарат (митохондриальные рибосомы). Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овальновытянутая.

Стенка митохондрий образована двумя билипидными мембранами. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки — кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).

Функция митохондрий — образование энергии в виде АТФ. Источником образования энергии в митохондриях является ПВК (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.

Различают две разновидности ЭПС:

1) зернистую (гранулярную, или шероховатую);

2) незернистую (или гладкую).

На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы. В цитоплазме при электронно-микроскопическом исследовании можно обнаружить два вида ЭПС, однако один из них преобладает, что и определяет функциональную специфичность клетки. Эти две разновидности ЭПС не являются самостоятельными и обособленными формами, так как при более детальном исследовании можно обнаружить переход одной разновидности в другую.

Функции зернистой ЭПС:

1) синтез белков, предназначенных для выведения из клетки (на экспорт);

2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;

3) конденсация и модификация синтезированного белка;

4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса;

5) синтез компонентов билипидных мембран.

Функции гладкой ЭПС:

1) участие в синтезе гликогена;

2) синтез липидов;

3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами для их последующего выведения).


Дата добавления: 2018-06-01; просмотров: 2433; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!