Сила упругости. Природа сил упругости. Виды упругих деформаций. Закон Гука.



Виды деформаций.

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил.
Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими, а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими.
Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба, кручения и сдвига.

Сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости.

Сила упругости имеет электромагнитную природу.

Закон Гука: при упругих деформациях сила упругости прямо пропорциональна абсолютному удлинению тела.

Fупр=-kΔl

Fупр – сила упругости; k– коэффициент пропорциональности, называемый жесткостью; Δl – удлинение тела (изменение его длины).

Знак «минус» показывает, что сила упругости направлена противоположно деформации тела.

Закон Гука справедлив только для упругой деформации.

Деформация является упругой, если после прекращения действия сил, деформирующих тело, оно возвращается в исходное положение.

 

2..Колебательный контур. Свободные электромагнитные колебания. Затухание свободных колебаний. Формула Томсона.

Электромагнитные колебания — это колебания электрического и магнитного полей, которые сопровождаются периодическим изменением заряда, силы тока и напряжения. Простейшей системой, где могут возникнуть и существовать свободные электромагнитные колебания, является колебательный контур. Колебательный контур — это цепь, состоящая из катушки индуктивности и конденсатора (рис. 29, а). Если конденсатор зарядить и замкнуть на катушку, то по катушке потечет ток (рис. 29, б). Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет иметь то же направление и перезарядит конденсатор (рис. 29, в). Процесс будет повторяться (рис. 29, г) по аналогии с колебаниями маятника.

Таким образом, в колебательном контуре будут происходить электромагнитные колебания

 из-за превращения энергии электрического поля конденсатора ( ) в энергию магнитного поля катушки с током ( ), и наоборот. Период электромагнитных колебаний в идеальном колебательном контуре (т. е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости конденсатора и находится по формуле Томсона . Частота с периодом связана обратно пропорциональной зависимостью .

В реальном колебательном контуре свободные электромагнитные колебания будут затухающими из-за потерь энергии на нагревание проводов. Для практического применения важно получить незатухающие электромагнитные колебания, а для этого необходимо колебательный контур пополнять электроэнергией, чтобы скомпенсировать потери энергии.

 

Билет № 9


Дата добавления: 2018-06-01; просмотров: 1714; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!