Боковая устойчивость и управляемость.
Гриф снят
Основание: письмо ОАО «КНААПО»
вх. № 1/416 от 24.02.2004 года
(ВВИА им. Жуковского, г. Москва)
САМОЛЕТ СУ-27СК
РУКОВОДСТВО ПО ЛЕТНОЙ ЭКСПЛУАТАЦИИ
Книга 2
СОДЕРЖАНИЕ
Страница
Содержание--------------------------------------------------------------------------------------- 2
7. ЛЕТНЫЕ ХАРАКТЕРИСТИКИ------------------------------------------------------------ 3
7.1. Продольная устойчивость и управляемость самолета------------------------------ 3
7.2. Боковая устойчивость и управляемость--------------------------------------------- 5
7.3. Особенности устойчивости и управляемости при полете с нессиметричной подвеской и отказе одного двигателя----------------------------------------------- 7
7.4. Взлетно-посадочные характеристики----------------------------------------------- 9
7.5. Некоторые дополнительные сведения о сваливании и штопоре самолета------- 11
8. ЭКСПЛУАТАЦИЯ СИСТЕМ-------------------------------------------------------------- 12
8.1. Эксплуатация силовой установки--------------------------------------------------- 12
8.2. Эксплуатация топливной системы-------------------------------------------------- 19
8.3. Эксплуатация системы пожаротушения--------------------------------------------- 22
8.4. Эксплуатация гидравлической системы-------------------------------------------- 23
8.5. Эксплуатация пневматических систем---------------------------------------------- 26
8.6. Эксплуатация взлетно-посадочных устройств-------------------------------------- 27
8.7. Эксплуатация системы управления самолетом------------------------------------- 29
8.8. Эксплуатация системы автоматического управления самолетом (САУ)--------- 35
8.9. Эксплуатация пилотажно-навигационного комплекса---------------------------- 39
|
|
8.10. Эксплуатация радиосвязного оборудования---------------------------------------- 60
8.11. Эксплуатация системы «Экран» и «Алмаз-УП»------------------------------------ 65
8.12. Эксплуатация системы «Нарцисс-М»----------------------------------------------- 70
8.13. Эксплуатация самолетного ответчика А-511--------------------------------------- 71
8.14. Эксплуатация радиолокационного ответчика (изделие 6202Р-1) и запросчика (изделие 6231Р-9)---------------------------------------------------------------------- 73
8.15. Эксплуатация системы электроснабжения------------------------------------------ 74
8.16. Эксплуатация светотехнического оборудования----------------------------------- 81
8.17. Эксплуатация герметичной кабины------------------------------------------------- 82
8.18. Эксплуатация кислородной системы и специального снаряжения летчика----- 87
8.19. Эксплуатация противоперегрузочного устройства-------------------------------- 92
8.20. Эксплуатация средств аварийного покидания и спасения------------------------ 92
8.21. Эксплуатация бортовых систем «Тестер-УЗ», СОК-Б и САС--------------------- 95
8.22. Эксплуатация аппаратуры приема команд наведения и активного ответа 11Г6 96
РАЗДЕЛ 7
ЛЕТНЫЕ ХАРАКТЕРИСТИКИ.
Самолет выполнен по интегральной схеме, при которой крыло и фюзеляж образуют единый несущий корпус, что обеспечивает ему высокие значения аэродинамического качества и коэффициента подъемной силы на маневре.
|
|
Продольная устойчивость и управляемость самолета.
На самолете установлена система дистанционного управления (СДУ), которая наряду с обеспечением продольной устойчивости самолета на дозвуковых скоростях полета обеспечивает также его высокую маневренность при сохранении хорошей устойчивости и управляемости во всем эксплуатационном диапазоне высот и скоростей полета.
В дозвуковом диапазоне режимов полета, а также на числах М=1-1,5 самолет устойчив по скорости.
В трансзвуковом диапазоне режимов полета на М=0,95-1,05, а также на М > 1,6 наблюдается небольшая неустойчивость по скорости, не затрудняющая пилотирования.
При выполнении маневров с торможением и проходе при этом числа М=1,0 «скоростной подхват» практически мало заметен до перегрузки ny ≤ 3,0; при торможении с большей перегрузкой величина «подхвата» составляет ∆ny =1,0-1,5.
Балансировочные зависимости φбал = f (cу) во всем диапазоне чисел М и углов атаки близки к линейным.
Расход ручки управления на создание единицы перегрузки не зависит от величины перегрузки и в основном диапазоне режимов полета составляет Xny = 12 мм/ед.перегр. – 25 мм/ед.перегр. На всех режимах полета, за исключением полета на высотах более 15000 м, балансировочное положение ручки управления в горизонтальном полете расположено за нейтралью «от себя». Наиболее переднее положение ручка занимает при полете в диапазоне чисел М=1,1-1,3. На высотах менее 6000 метров это ограничивает возможность создания отрицательных перегрузок.
|
|
Зависимости отклонения стабилизатора и ручки продольного управления в горизонтальном полете от числа М приведены на рис. 1 и 2.
Характер переходного процесса по перегрузке на дозвуковых режимах полета – апериодический, на сверхзвуковых режимах – колебательный. Остаточные колебания отсутствуют.
Выпуск тормозного щитка на дозвуковых скоростях создает небольшой кабрирующий момент, для парирования которого необходима перебалансировка по усилию ΔРв ≤ 2 кг.
При выполнении маневров с торможением на сверхзвуковых скоростях полета с предельными располагаемыми перегрузками на высотах более 10000 м при прохождении числа М=1,05 с фиксированной ручкой управления возможен заброс по углу атаки. Во избежание этого на указанных режимах при подходе к числу М=1,0 необходимо уменьшать перегрузку на ΔПу=1,0. После прохода трансзвука пилотировать можно на границе срабатывания ограничителя предельных режимов (ОПР).
|
|
ОПР при пилотировании на границе его срабатывания обеспечивает выполнение маневров с любым (вплоть до максимально возможного) темпом взятия ручки управления без превышения допустимых значений угла атаки и перегрузки.
φ°г.п.
| ||||||||||||||||||||
|
| |||||||||||||||||||
| ||||||||||||||||||||
|
| |||||||||||||||||||
| ||||||||||||||||||||
| ||||||||||||||||||||
Рис. 1. Балансировочные углы отклонения стабилизатора в зависимости от числа М.
Хг.п. (см)
| ||||||||||||||||||
| ||||||||||||||||||
| ||||||||||||||||||
|
Рис. 2. Зависимость хода ручки от числа М.
При выполнении маневров с торможением, в особенности на скоростях менее 500 км/ч, необходимо учитывать, что при постоянном усилии на ручке управления угол атаки будет возрастать. При этом необходимо контролировать значение угла атаки по указателю УАП и по высвечиванию светосигнализатора α, Пу КРИТИЧ, так как ограничитель предельных режимов (ОПР) в указанном случае воздействует на ручку управления с запаздыванием, что может привести к превышению допустимых углов атаки.
Возрастание угла атаки при зафиксированной ручке возможно также на предпосадочном планировании.
По перегрузке самолет с СДУ устойчив во всем диапазоне высот и скоростей полета. Выход на заданную перегрузку и угол атаки на М < 1 происходит без колебаний и забросов при V ≥ 700 км/ч.
В полете на числах М ≥ 1,5 при интенсивном торможении самолета и возникающей при этом значительной продольной перегрузке возможно непроизвольное отклонение летчиком ручки управления «от себя». Последующее парирование отрицательной перегрузки отклонением ручки управления «на себя» может привести к продольной раскачке самолета.
В случае возникновения раскачки зафиксировать (освободить) ручку управления до прекращения продольных колебаний.
При полете на малых высотах в турбулентной атмосфере возникает «болтанка» самолета, при которой самолет чрезвычайно чувствителен к вертикальным порывам, что усложняет пилотирование.
Как в случае раскачки, так и в случае «болтанки» необходимо задержать ручку управления самолетом.
Подвеска ракет вплоть до 6хР-27Р1, (Э)Т1 и 4хР-73Э во всем диапазоне высот, скоростей и углов атаки, характеристики устойчивости и управляемости не изменяет, на пилотировании самолета не сказывается.
Пуски ракет с любых точек подвески практически не сказываются на поведении самолета.
При подвеске некоторых вариантов АБСП до 4000 кг и НР (4-х С-25) самолет с отключенной СДУ становится нейтральным по перегрузке. С включенной СДУ самолет устойчив во всем диапазоне чисел М и углов атаки.
Боковая устойчивость и управляемость.
Для повышения запаса путевой устойчивости в систему бокового канала СДУ введен автомат путевой устойчивости – демпфер курса. Путевая статическая устойчивость самолета сохраняется во всем диапазоне чисел М. Зависимость коэффициентов путевой и поперечной статической устойчивости от угла атаки myв=f(α) и mxв=f(α) приведена на рис. 3. На скоростях Vпр более 800 км/ч и числах М=0,7-1,0 самолет обладает повышенной чувствительностью к созданию боковой перегрузки на отклонение педалей. Реакция самолета по крену на отклонение педалей на всех режимах полета при Пу ≥ 1,0 – прямая вплоть до углов атаки сваливания.
Для обеспечения поперечной управляемости используется совместное отклонение флаперонов и дифференциальное отклонение стабилизатора, последнее используется и для демпфирования по крену.
Балансировка при координированных скольжениях в горизонтальном полете отмечается малым расходом ручки по крену.
Для обеспечения поперечной управляемости на больших углах атаки в путевой канал СДУ введена перекрестная связь руля направления с поперечным отклонением ручки управления, а для увеличения угла атаки сваливания (α свал.) в систему поперечного управления на углах атаки более 25° введено механическое ограничение поперечного отклонения ручки на 1/3 хода в виде пружинного упора с усилием 7 кгс. При отказе демпфера крена и демпфера курса обеспечиваются достаточные для завершения полета и выполнения посадки характеристики боковой управляемости, при этом α доп.=10°.
myв δэл.зав. = f (α) δнос = f (α) β = ±2°
| |||||||||||||||||||
| |||||||||||||||||||
| |||||||||||||||||||
СК-1
mхв δэл.зав. = f (α) δнос = f (α)
| |||||||||||||||||||
| |||||||||||||||||||
Рис. 3. Зависимость коэффициента путевой и поперечной статической устойчивости от угла атаки.
Для обеспечения хороших характеристик маневренности во всем допустимом диапазоне углов атаки на дозвуковых скоростях полета введены системы автоматического управления носками крыла и флаперонами по сигналу угла атаки. С увеличением угла атаки характеристики боковой устойчивости и управляемости сохраняются удовлетворительными, вплоть α доп.
На скоростях менее 400 км/ч и α ≥ 24° самолет обладает пониженной поперечной управляемостью. При выводе из крена на скоростях менее 400 км/ч во время выполнения маневров по границе срабатывания ОПР возможен заброс угла атаки более α доп.
Поэтому при выводе из крена контролировать угол атаки, не допуская превышения αдоп.
На углах атаки α > 28° вплоть до сваливания управляемость самолета отсутствует.
Аэродинамическая тряска возникает на углах атаки α=9°-5° при числах М=0,5-0,9 соответственно. При увеличении угла атаки интенсивность тряски возрастает и через Δα=2°-3° стабилизируется.
Характер тряски мягкий. Во всем диапазоне углов атаки тряска пилотирование не затрудняет и предупредительным признаком о приближении к α доп. служить не может.
При отключенной и отказавшей системе управления носками крыла пилотирование безопасно и особенностей не имеет до α доп. =10°.
Поведение самолета с отклоненными носками на 30° (шасси убраны, флапероны убраны) особенностей не имеет. Отказ управления носками и флаперонами на дозвуковых скоростях не вызывает эволюций самолета, требующих вмешательства летчика. Максимальное приращение перегрузки при этом ΔПу ≈ 0,5. Располагаемая угловая скорость по крену при увеличении угла атаки уменьшается, но остается достаточной до α доп. (более 20°/сек). Эффективность поперечного управления в горизонтальном полете обеспечивает угловую скорость крена ωх ≥ 1,5°/сек.
На взлетно-посадочных режимах с выпущенной механизацией крыла и шасси обеспечивается угловая скорость ω 1,0°/сек.
Характеристики устойчивости и управляемости самолета без подвесок и со всеми вариантами ракетного вооружения сохраняются приемлемыми до углов атаки:
а) для самолетов без подвесок или УР:
М | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,0 |
α доп. | 24 | 23 | 22 | 20 | 19 | 18 |
су доп. | 1,85 | 1,7 | 1,58 | 1,45 | 1,3 | 1,2 |
б) для самолетов с АБСП до 4000 кг или НР:
М | 0,5 | 0,7 | 0,85 |
α доп. | 20 | 18 | 16 |
су доп. | 1,61 | 1,5 | 1,35 |
Зависимость α макс = f (M, H) (с учетом ограничений по α доп. φмакс = 20° и Пуэ) и су бал = f (α, М) приведены на рис. 4 и 5.
Дата добавления: 2018-05-31; просмотров: 547; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!