Пример обозначения интегральной микросхемы К134ЛА4А



К- ИМС широкого применения,

1- полупроводниковая ИМС,

34- порядковый номер разработки 34,

ЛА- функциональное назначение - логические элементы И-НЕ,

4- порядковый номер разработки по функциональному признаку,

А- отличие по параметру внутри одного функционального варианта. 

Лекция №7: «Конструирование модулей нулевого и первого уровня».

I. Стандартизация при модульном конструировании.

Базовый принцип.

Модули нулевого уровня.

Микросборки.

Модули первого уровня.

Ускорение разработки и производства аппаратуры, увеличение ее се­рийности, снижение стоимости можно достигнуть унификацией, нормали­зацией и стандартизацией основных параметров и типоразмеров печатных плат, блоков, приборных корпусов, стоек, широким применением модульно­го принципа конструирования.

В основе стандартизации модулей и их несущих конструкций лежат ти­повые функции, свойственные многим электронным системам. Для использования при проектировании модульного принципа конструирования разработа­ны ведомственные нормали и государственные стандарты, устанавливающие термины, определения, системы типовых конструкций модульных систем.

Конструкционная система должна представлять много­уровневое семейство модулей с оптимальным составом набора, обеспечи­вающим функциональную полноту при построении аппаратуры определен­ного назначения. Все модули системы должны быть совместимы между со­бой по конструктивным, электрическим и эксплуатационным параметрам.

Базовый принцип.

 

Базовым называется принцип конструирования, при котором частные конструктивные решения реализуются на основе стандартных конструкций модулей или конструкционных систем модулей (базовых конструкций), раз­решенных к применению в аппаратуре определенного класса, назначения и объектов установки.

При разработке базовых конструкций должны учитываться особенно­сти современных и будущих разработок. При этом част­ные конструктивные решения обобщаются, а основные свойства и парамет­ры закладываются в конструкции, которые стандартизуются, поставляются и рекомендуются для широкого применения.

Базовые конструкции не должны быть полностью конструктивно за­вершенными, необходимо предусматривать возможность их изменения для создания модификаций аппаратур­ных решений. Иерархическое построение базовых конструкций с гибкой структурой и числом уровней не более четырех является вполне достаточ­ным для разработки РЭА любой сложности.

Каждый из элементов конструктивной иерархии характеризуется длиной L, высотой H и глубиной (ши­риной) B. В зависимости от назначения того или иного типа систем соотношение размеров определенных ее конструктивных частей может быть различным. Однако эти соотношения должны подчиняться определенным правилам и закономерностям, ко­торые устанавливают соответствующие технические регламенты на определенный класс аппаратуры.

В конструкционных системах любого типа электронной аппаратуры основные размеры L, Н, В базо­вых конструкций устанавливаются соответ­ствующими единому модулю. В каждом направлении развития размеров по координатам x(L), у(Н), z(B) указанный модуль равен 2,5 мм. Он уста­навливается в соответствии с шагом координатной сетки пе­чатных плат и выводов элементов на печатной плате и пе­редней панели по x(L), шагом выводов элементов и соедини­телей на функциональной печатной плате и на кроссплате по у(Н) и z(B).

Единый размерный модуль обеспечивает компоновку раз­личных изделий конструкционной системы как в про­странстве, например в трех различных плоскостях комплект­ного корпуса или блока, так и на плоскости - на поверхности одноплатного изделия. Для каждого уровня базовых конструкций устанавливаются ряды размеров по L, Н, В, каждый из которых взаимосвязан с рядами размеров других уровней с целью обеспечения конструктивной совместимости. Каж­дый последующий член ряда образуется приращением к пре­дыдущему принятого значения модуля.

Для конкретного проектирования базовых конструкций из отдельных членов рядов составляются опти­мальные типоразмеры, среди которых выделяются предпочти­тельные. Главным исходным требованием при выборе типо­размера является плотность компоновки, определяемая отно­шением числа активных элементов и корпусов ИС к площади (объему) изделия. Типоразмеры являются рабочим средством достижения сквозной совместимости изделий системы. На­пример, типоразмеры плат образовываются с учетом стандарт­ной установки их в соответствующий корпус, а типоразмеры корпусов, в свою очередь, устанавливаются с учетом осуще­ствления взаимоприменений.

Модули нулевого уровня.

 

На низшем нулевом уровне конструктивной иерархии РЭА находятся МС. По функциональному назначению МС делят на логические (цифровые), линейно-импульсные и линейные (ана­логовые). Элементы электрической схемы полупроводниковых МС формируют в объеме или на поверхности полупроводникового материала (подложки). Формирование активных и пассивных элементов схемы про­изводят введением концентраций при­месей в различные части монокристаллической пластины. В зависимости от применяемых активных элементов полу­проводниковые МС подразделяют на схемы с биполярными и униполярными структурами. В гибридных МС пассивную часть схемы выполняют в виде пленок, наносимых на поверхность ди­электрического материала (подложки), а активные элементы, имеющие самостоятельное конструктивное оформление, крепят к поверхности подложки.

Степень интеграции Ки микросхемы определяется числом N содержащихся в ней элементарных схем: Ки = [lgN] + 1, где [lgN - целая часть lgN. Микросхема, содержащая до 10 элементарных схем, имеет первую степень интеграции (малая МС), до 100 схем - вторую (средняя МС), до 1000 схем - третью (БИС), свыше 1000 схем - сверхбольшую МС (СБИС).

 

Ряд функциональных микросхем, объединенных по виду технологии изготовления, напряжениям источников питания, входным и выходным сопротивлениям, уровням сигналов, конструктивному оформлению и способам монтажа, образуют серию МС. Обычно в серию МС входит такой набор функциональных микросхем, из которых можно построить законченное устройство. Существу­ют также серии специальных микросхем, предназначенных для работы в специфических условиях, или специального назначения.

Микросборки.

 

 Наивысшая плотность компоновки РЭА имеет место при использова­нии бескорпусных компонентов. Однако установка и монтаж последних на печатных платах не обеспечивает высокой плотности ком­поновки из-за низкой разрешающей способности монтажа. На сегодняшний день возможности печатного монтажа практически исчерпаны. Введение в конструкцию промежуточного элемента - подложки - устранит этот не­достаток.

Бескорпусные активные компоненты фиксируются клеем на подлож­ке, на которой методом тонко- или толстопленочной технологии выполня­ются проводники, контактные площадки цепей входа и выхода, пленочные пассивные компоненты. Подобные конструкции называют микросборками. Микросборки представляют собой бескорпусные гибридные МС индивидуального применения. Интегральные микросхемы микросборок не обязательно должны быть согласованы по входу и выходу, это обеспечивается пассивными элементами схемы микросборки. В отличие от универсальных БИС, используемых в разнообразной аппаратуре, микросборки разрабатывают под конкретную аппаратуру для получения вы­соких показателей ее микроминиатюризации, уменьшения потерь полезного объема аппаратуры. Хотя разрешающая способность толстопленочной тех­нологии ниже тонкопленочной, в ней сравнительно легко удается реализо­вать многослойные конструкции и повысить плотность компоновки.

Материалом подложек мик­росборок могут быть некоторые виды стекол и керамики. Легкость получе­ния гладких поверхностей и дешивизна являются основными преимущест­вами стекол. Однако низкая теплопроводность, препятствующая рассеива­нию больших мощностей, хрупкость, трудность получения сложных форм подложек ограничивает их применение. Керамику отличает большая меха­ническая прочность, лучшая теплопроводность, хорошая химическая стой­кость, но и повышенная стоимость и относительно грубая поверхность.

В качестве материалов подложек используется ситалл (на основе стекла), поликор (керамика на основе окиси алюминия), гибкие полиамидные пленки. Размеры ситалловых подложек обычно не превышают 48x60 мм, поликоровых — 24x30 мм. Для увеличения механической жесткости и тепловой стойкости гибкие пленки чаще всего фиксируют на пластине из алюминиевого сплава. Макси­мальные размеры таких подложек составляют 100x100 мм, плотность разводки 5 линий/мм (минимальные ширина и зазоры между проводниками по 0,1 мм), шаг внутренних контактных площадок 0,3.. .0,5 мм, внешних — 0,625 мм.

Модули первого уровня.

 

При конструировании модулей первого уровня выполняются следую­щие работы:

· Изучение функциональных схем с целью выявления одинаковых по назначению подсхем и унификации их структуры в пределах изделия, что приводит к уменьшению многообразия подсхем и номенклатуры различных типов ТЭЗ.

· Выбор серии микросхем, корпусов микросхем, дискретных радиоэлементов.

· Выбор единого максимально допустимого числа выводов соединителя для всех типов модулей. За основу принимают число внешних связей наиболее повторяющегося узла с учеучетом цепей пи­тания и нулевого потенциала и до 10 % запаса контактов на возмож­ную модификацию.

· Определение длины и ширины печатной платы. Ширина платы, как правило, кратна или равна длине соединителя с учетом полей установки и закрепления платы в модуле второго уровня. Требования по быстродейст­вию и количество устанавливаемых на плату компонентов влияют на ее длину.

· Собственно конструирование печатных платы.

· Выбор способов защиты модуля от перегрева и внешних воздействий.

 

Широкое распространение получила плоская компоновка модуля, когда компоненты схемы устанавливают в плоскости платы с одной или двух сто­рон. Для плоской компоновки характерна ма­лая высота установки компонентов по сравнению с длиной и шириной платы. Простота выполнения монтажных работ, легкость доступа к компонентам и монтажу, улучшенный тепловой режим являются основными преимущества­ми плоской компоновки. Если для внешней коммутации модуля вводится со­единитель, то подобную конструкцию называют типовой элемент замены ТЭЗ (рис. 7.1). На печатную плату устанавливают микросхемы 4 и для исключения влияния на работу микросхем помех по электропитанию - развязывающие конденсаторы 5.

 

Лицевая панель выполняет одновременно несколько функций. На ней располагают элементы индикации и управления, контрольные гнезда, ино­гда электрические соединители, которые взаимодействуют с платой провод­ным монтажом. На панели в резьбовые отверстия помещают невыпадающие винты 2, которыми ТЭЗ жестко фиксируется на несущей конструкции модуля второго уровня, наносится адрес, позволяющий отличить ТЭЗ среди подоб­ных в наборе РЭА, а также предотвратить непра­вильную установку ТЭЗ.

 

Панель и электрический соедини­тель крепят к печатной плате винтовым или заклепочным соединением. В условиях жестких механических воздействий плату ТЭЗ устанавливают на рамку, что увеличивает жесткость конструкции. При большом числе внешних цепей на ТЭЗ устанавливают несколько соединителей, располагающихся на одной или нескольких сторонах платы.

 

Рис. 7.1. Типовой элемент замены ТЭЗ

1-лицевая панель, 2-невыпадающий винт, 3-печатная плата, 4-микросхема,

 5-развязывающий конденсатор,

6-электрический соединитель (разъем).

 

В блоках транспортируемой аппаратуры печатные платы модулей, как правило, закреплены жестко на несущей конструкции. Модули первого уровня взаимодействуют между собой приборными соединителями печатного монтажа, непосредственной подпайкой проводов к монтаж­ным отверстиям плат, с использованием переходных штырьков и колодок.

Соединители обеспечивают быструю замену мо­дулей и бывают прямого и косвенного сочленения. Вилка соединителя пря­мого сочленения является частью печатной платы с печатными ламелями, розетка соединителя - открытого и закрытого исполнения. В розетках открытого исполне­ния прорезь для установки печатной платы открыта с концов, что позволяет устанавливать в нее различные по ширине платы. Розетки закрытого типа ограничены с концов торцевыми поверхно­стями и служат для установки плат фиксированной ширины. Взаимная ори­ентация модуля и розетки осуществляется перегородкой в розетке и пазом под эту перегородку в концевой части печатной платы. Фиксация модуля в розетке открытого исполнения производится за счет пружинящих контактов розетки, в розетке закрытого исполнения могут быть защелки на торцевых поверхностях соединителя. Расстоя­ние между соседними печатными ламелями выбирается из ряда: 1,25; 2,5;3,75 и 5 мм. Малое омическое сопротивление и высокая износо­стойкость контактной пары ламель - контакт розетки достигается покрытием медных поверхностей ламелей серебром, палладием, золотом, родием. Толщина покрытия варьи­руется в пределах 3-50 мкм.

 

При конструировании печатных плат необходимо решать задачи:

· выбор проводниковых и изоляционных материалов, формы и раз­меров печатных плат, способов установки компонентов;

· определение ширины, длины и толщины печатных проводников, расстояний между ними, диаметров монтажных и переходных отверстий, размеров контактных площадок;

· трассировка печатного монтажа.


Дата добавления: 2018-05-30; просмотров: 662; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!