Основные проблемы и перспективы развития компьютерных сетей



В совершенствовании будущих ЭВМ видны два пути. На физическом уровне это переход к использованию иных физических принципов построения узлов ЭВМ на основе оптоэлектроники, использующей оптические свойства материалов, на базе которых создаются процессор и оперативная память, и криогенной электроники, использующей сверхпроводящие материалы при очень низких температурах. На уровне совершенствования интеллектуальных способностей машин, отнюдь не всегда определяемых физическими принципами их конструкций, постоянно возникают новые результаты, опирающиеся на принципиально новые подходы к программированию. Уже сегодня ЭВМ выигрывает шахматные партии у чемпиона мира, а ведь совсем недавно это казалось совершенно невозможным. Создание новейших информационных технологий, систем искусственного интеллекта, баз знаний, экспертных систем продолжается в XXI веке.

Наконец, уже сегодня огромную роль играют сети ЭВМ, позволяющие разделить решение задачи между несколькими компьютерами. В недалеком будущем и сетевые технологии обработки информации станут, по-видимому, доминировать, существенно потеснив персональные компьютеры (точнее говоря, интегрировав их в себя).

В будущем можно предполагать наличие сотен активных компьютерных устройств, отслеживающих наше состояние и местоположение, легко воспринимающих нашу информацию и управляющих бытовыми приборами. Они не будут находиться в одной общей «оболочке «, как это устроено сейчас в программируемом пульте дистанционного управления аппаратурой, находящейся в нашей комнате телевизором, видеомагнитофоном, аудиосистемой. В отношении компьютерных устройств подобного рода перспективы развития можно сформулировать таким образом: они станут намного более миниатюрными, портативными и будут иметь низкую стоимость, т.е. станут более доступными.

Каждый компьютер не только умеет правильно и быстро считать, но и представляет собой огромное хранилище информации, созданное человеком. В настоящее время все шире стала использоваться специфическая функция компьютеров - информационная, и именно это является одной из причин наступающей «всеобщей компьютеризации «. Обычно информацию готовят на компьютере, затем печатают и уже в таком виде распространяют.

Однако уже в начале XXI века ожидается смена основной информационной среды - большую часть информации люди станут получать не по традиционным каналам связи - радио, телевидение, печать, а через компьютерные сети.

Постепенно меняется цель использования компьютеров. Прежде компьютеры применяли для различных научно-технических и экономических расчетов и работали на них пользователи с общей компьютерной подготовкой и программисты. Теперь же, благодаря телекоммуникациям, кардинально меняется технология использования компьютеров пользователем. В будущем потребность в компьютерных телекоммуникациях будет расширяться

Компьютер не будет привязан к какому либо специальному помещению, он будет полностью мобильным, снабжен радиомодемом для входа в компьютерную сеть. Прообраз такого компьютера - Note Book .

Для обеспечения доступности общения с компьютером на естественном языке он будет оснащен средствами мультимедиа, в первую очередь аудио- и видеосистемами.

Для обеспечения качественного и повсеместного обмена информацией между компьютерами будут использоваться принципиально новые каналы связи:

· инфракрасные каналы в пределах прямой видимости;

· телевизионные каналы;

· беспроводная технология высокоскоростной цифровой связи на частоте 10 МГц.

Это позволит строить системы сверхскоростных информационных магистралей, связывающих воедино все существующие системы. При обеспечении практически неограниченной пропускной способности передачи информации в перспективе разработка и использование медиасерверов, способных хранить и предоставлять информацию в реальном режиме времени по множеству одновременно приходящих запросов.

Очеловечивание компьютера будет продолжаться, несмотря ни на что. На очереди — управление голосом — голосовой интерфейс и трехмерный интерфейс, а также программы распознавания рукописных текстов, то есть информацию в компьютер можно вводить «от руки» (посредством светового пера либо специальных программ распознавания рукописей). Это, надо думать, требует еще больших ресурсов от аппаратных средств, однако и техника не стоит на месте — намечается замена в процессорах потока электронов потоком фотонов (частиц света), это даст еще большее увеличение мощности и быстродействия работы компьютеров.

Сферы применения ЭВМ все расширяются, и каждая из них обусловливает новую специфическую тенденцию развития компьютерной техники. В перспективе все вычислительные комплексы и системы от суперЭВМ до персонального компьютера будут составляющими единой компьютерной сети. При такой сложной распределенной структуре должна быть обеспечена практически неограниченная пропускная способность и скорость передачи информации.

Разрабатываются и нецифровые компьютеры — нейрокомпьютеры, где информация анализируется не в цифрах, а в логике нервных окончаний. В природе такие функции выполняет мозг человека, который состоит из более чем 10 млрд. нервных клеток- нейронов. Моделирование нейронов и лежит в основе нейрокомпьютеров, разработка которых уже ведется. Нейрокомпьютеры обладают принципиально новым свойством — возможностью самообучения в ходе решения задач. По своей сути нейрокомпьютер является имитацией человеческой нейронной сети (нейрон — основная элементарная ячейка мозга человека). Нейрон взаимодействует с другим нейроном, посылая ему электрический сигнал — нервный импульс. Каждый нейрон связан примерно с 10000 нейронами. По такому же принципу строится память компьютера, где сначала формируется требуемый массив ячеек, а межсоединения осуществляются практически без искажений оптическим образом — в оптическом тракте системы. Магнитооптические управляемые устройства уже сегодня позволяют сформировать массив бинарной информации из 10 4 ячеек, причем скорость обработки его по алгоритму нейронной сети на несколько порядков превосходит возможности человеческого мозга. В начале XXI века можно ожидать, что наша планета будет «покрыта» сетью компьютеров, построенных на распределенной нейронной архитектуре и имеющих микропроцессоры со встроенными средствами связи.

Компьютеры уменьшаются в размерах при возрастании мощности процессора в соответствии с законом Мура. В 1965 году Гордон Мур, впоследствии (в 1968 году) вместе с Бобом Нойсом основавший фирму Intel — мирового лидера производства процессоров, — предсказал, что число транзисторов в компьютерных чипах ежегодно будет удваиваться. Через 10 лет (закон Мура все десять лет неукоснительно соблюдался) удвоение стало происходить каждые два года (точнее каждые 18 месяцев). В соответствии с законом Мура, в 2020 г . компьютеры достигнут мощности человеческого мозга, так как смогут выполнять 20 квадриллионов (т. е. 20 000 000 млрд.) операций в секунду, а к 2060 г ., как считают некоторые футурологи, компьютер сравняется по силе разума со всем человечеством.

Закон Мура, по всей видимости, будет действовать еще лет 20. И тогда вычисления, занимающие сегодня сутки, будут проводиться в 10 000 раз быстрее и потребуют не более 10 секунд. Лаборатории США уже работают с "баллистическими" транзисторами, время переключения которых порядка фемтосекунды, то есть 1/1 000 000 000 000 000 секунды, т.е. такие транзисторы в 10 млн. раз быстрее современных. Вся сложность в том, что необходимо так уменьшить размер чипа и протекающий в нем ток, чтобы движущиеся электроны не сталкивались даже друг с другом.

Следующий этап — создание "одноэлектронного транзистора", в котором единственный бит информации представлен одиночным электроном — это абсолютный предел для низкоэнергетической вычислительной техники. Чтобы воспользоваться преимуществами такого невероятного быстродействия на молекулярном уровне, компьютеры должны стать микроскопическими.

 


Дата добавления: 2018-06-27; просмотров: 1789; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!