Состав, свойства природного газа. Горение. Горелки



Природный газ должен отвечать требованиям ГОСТ 5542-2014 «Газы горючие природные промышленного и коммунально-бытового назначения. Технические условия».

Рис.1. Состав природного газа?

Состав и свойства природного газа. Природный газ (газ горючий природный; ГГП) - Газообразная смесь, состоящая из метана и более тяжёлых углеводородов, азота, диоксида углерода, водяных паров, серосодержащих соединений, инертных газов.Метан является основным компонентом ГГП. ГГП обычно также содержит следовые количества других компонентов (рис.1).

1. Горючие компоненты включают углеводороды:

а) метан (СН4) - основной компонент природного газа, до 98% по объему (остальные компоненты присутствуют в небольших количествах или отсутствуют). Без цвета, запаха и вкуса, нетоксичен, взрывоопасен, легче воздуха;

б) тяжелые (предельные) углеводороды [этан (С2Н6), пропан (СзН8), бутан (С4Н10) и др.] - без цвета, запаха и вкуса, нетоксичны, взрывоопасны, тяжелее воздуха.

2. Негорючие компоненты (балласт):

а) азот (N2) - составная часть воздуха, без цвета, запаха и вкуса; инертный газ, т. к. не взаимодействует с кислородом;

б) кислород (О2) - составная часть воздуха; без цвета, запаха и вкуса; окислителем.

в) углекислый газ (диоксид углерода СО2) - без цвета со слегка кисловатым привкусом. При содержании в воздухе более 10% токсичен, тяжелее воздуха;

Воздух. Сухой атмосферный воздух, это многокомпонентная газовая смесь состоящая из (об. %): азота N2 - 78 %, кислорода О2 - 21 %, инертных газов (аргон, неон, криптон и пр.) - 0,94 % и углекислого газа – 0,03 %.

Рис.2. Состав воздуха.

Воздух так же содержит водяной пар и случайные примеси – аммиак, сернистый газ, пыль, микроорганизмы и пр. (рис. 2). Газы, которые входят в состав воздуха, распределены в нем равномерно и каждый из них сохраняет свои свойства в смеси.

3. Вредные компоненты:

а) сероводород (Н2S) - без цвета, с запахом тухлых яиц, токсичен, горит, тяжелее воздуха.

б) цианистоводородная (синильная) кислота (HCN) - бесцветная легкая жидкость, в газе имеет газообразное состояние. Ядовита, вызывает коррозию металла.

4. Механические примеси (содержание зависит от условий транспортирования газа):

а) смолы и пыль - перемешиваясь могут образовать закупорки в газопроводах;

б) вода - при низких температурах замерзает, образуя ледяные пробки, что приводит к обмерзанию редуцирующих устройств.

ГГП по токсикологической характеристике относятся к веществам ΙV-го класса опасности по ГОСТ 12.1.007. Это газообразные малотоксичные пожаровзрывоопасные продукты.

Плотность: плотность атмосферного воздуха при нормальных условиях - 1,29 кг/м3, а метана - 0,72 кг/ м3, следовательно метан легче воздуха.

Требования ГОСТ 5542-2014 к показателям ГГП:

1) массовая концентрация сероводорода - не более 0,02 г/м3;

2) массовая концентрация меркаптановой серы - не более 0,036 г/м3;

3) молярная доля кислорода - не более 0,050%;

4) допустимое содержание механических примесей - не более 0,001 г/м3;

5) молярная доля диоксида углерода в природном газе, не более 2,5 %.

6) Низшая теплота сгорания ГГП при стандартных условиях сгорания по ГОСТ 5542-14 - 7600 ккал/м3;

7) содержание жидкой фазы воды – не допускается.

8) интенсивность запаха газа для коммунально-бытового назначения при объемной доле 1% в воздухе – не менее 3 баллов, а для газа промышленного назначения этот показатель устанавливают по согласованию с потребителем.

Единица комерческогорасхода ГГП - 1 м3  газа при давлении 760 мм рт. ст. и температуре 20 оС;

Температура самовоспламенения – наименьшая температура нагретой поверхности, которая в заданных условиях воспламеняет горючие вещества в виде газо- или паровоздушной смеси. Для метана составляет 537 °С.  Температура горения (максимальная температура в зоне горения):  метана - 2043 °С. 

Удельная теплота сгорания метана: низшая - QH = 8500 ккал/м3, высшая - Qв - 9500 ккал/м3. Для целей сравнения видов топлива введено понятие условного топлива (у.т.), в РФ за его единицу принималась теплота сгорания 1 кг каменного угля, равная 29,3 МДж или 7000 ккал/кг.

Условия измерения расхода газа бывают:

· нормальные условия(н. у): стандартные физические условия, с которыми обычно соотносят свойства веществ. Нормальные условия определены IUPAC (Международным союзом практической и прикладной химии) следующим образом: Атмосферное давление 101325 Па = 760 мм рт. ст..Температура воздуха 273,15 K = 0° C. Плотность метана при н.у. - 0,72 кг/ м3,

· стандартные условия (с. у) объема при взаимных (коммерческих) расчетах с потребителямиГОСТ 2939-63: температура 20°С, давление 760 мм рт.ст. (101325 Н/м), влажность равна нулю. (По ГОСТ 8.615-2013 нормальные условия именуются как "стандартные условия"). Плотность метана при с.у. - 0,717 кг/м3.

Скорость распространения пламени (скорость горения) – скорость перемещения фронта пламени относительно свежей струи горючей смеси в данном направлении. Ориентировочная скорость распространения пламени: пропан - 0,83 м/с, бутан - 0,82 м/с, метан - 0,67 м/с, водород - 4,83 м/с., зависит от состава, температуры, давления смеси, соотношения газа и воздуха в смеси, диаметра фронта пламени, характера движения смеси (ламинарное или турбулентное) и определяет устойчивость горения.

К недостаткам(опасным свойствам)ГГП относятся: взрываемость (воспламеняемость); интенсивное горение; быстрое распространение в пространстве; невозможность определения нахождения; удушающие действие, при недостатке кислорода для дыхания.

   
Рис.3. Опасные свойства природного газа. Рис.4. Зависимости предела взрываемости от изменения давления газа.

Взрываемость (воспламеняемость). Различают:

Рис.5. «Огненный» треугольник.

а) нижний предел воспламеняемости (НПВ) – наименьшее содержание газа в воздухе, при котором газ воспламеняется (метан – 4,4%). При меньшем содержании газа в воздухе воспламенения не будет из-за недостатка газа; (рис. 3)

б) верхний предел воспламеняемости (ВПВ)– наибольшее содержание газа в воздухе, при котором происходит процесс воспламенения (метан – 17%). При большем содержании газа в воздухе воспламенения не будет из-за недостатка воздуха. (рис. 3)

В ФНП НПВ и ВПВ называют нижними и верхним концентрационными пределоми распространения пламени (НКПРП и ВКПРП).

При повышении давления газа диапазон вежду верхним и нижним пределами давления газа – уменьшается (рис. 4).

Для взрыва газа (метана) кроме содержания его в воздухе в пределах воспламеняемости необходим сторонний источник энергии (искра, пламя и т. д.). При взрыве газа в закрытом объеме (помещение, топка, резервуар и т. д.), разрушений больше, чем при взрыве на открытом воздухе (рис. 5).

Предельно допустимые концентрации (ПДК) вредных веществ ГГП в воздухе рабочей зоны установлены в ГОСТ 12.1.005.

Максимальная разовая ПДК в воздухе рабочей зоны (в пересчете на углерод) составляет 300 мг/м3.

Опасная концентрация ГГП (объемная доля газа в воздухе) – это концентрация, равная 20% нижнего предела воспламеняемости газа.

Токсичность - способность отравлять организм человека. Углеводородные газы не оказывают сильного токсикологического действия на организм человека, но их вдыхание вызывает у человека головокружение, а значительное их содержание во вдыхаемом воздухе. При снижении кислорода  до 16 % и менее, может привести к удушью.

При сжигании газа с недостатком кислорода, т. е. с недожогом, в продуктах сгорания образуется окись углерода (СО), или угарный газ, который является высокотоксичным газом.

Одоризация газа - добавление в газ сильно пахнущего вещества (одоранта) для придания запаха ГГП перед поставкой потребителям в городские сети. При использовании для одоризвции этилмеркаптана 2Н5SН - по степени воздействия на организм относится ко ΙΙ-му классу токсикологической опасности по ГОСТ 12.1.007-76), его добавляют 16 г на 1000м3. Интенсивность запаха одорированного ГГП при объемной его доле 1% в воздухе, должна быть не менее 3 баллов по ГОСТ 22387.5.

Не одорированный газ может поставляться на промышленные предприятия, т.к. интенсивность запаха природного газа для промышленных предприятий, потребляющих газ от магистральных газопроводов, устанавливается по согласованию с потребителем.

Горение газов.Топка котла (печи), в которой газообразное (жидкое) топливо сжигается в факеле соответствует понятию «камерная топка стационарного котла».

Горение углеводородных газов – химическое соединение горючих компонентов газа (углерода С и водорода Н) с кислородом воздуха О2 (окисление) с выделением тепла и света: СН4+2О2=СО2+2Н2О.

Рис. 6.Реакция полного сгорания метана.

При полном сгорании углерода образуется углекислый газ (СО2), а водорода - водяной пар (Н2О).

Теоретически для сжигания 1 м3 метана необходимо 2 м3 кислорода, которые содержатся в 9,52 м3 воздуха (рис. 6). Если воздуха на горение подается недостаточно, то для части молекул горючих компонентов не будет хватать молекул кислорода и в продуктах сгорания кроме углекислого газа (СО2), азота (N2) и водяных паров (Н2О) появятся продукты неполного сгорания газа:

- угарный газ (СО), который при попадании в помещение может вызвать отравление обслуживающего персонала;

- сажа (С), которая, осаждаясь на поверхностях нагрева ухудшает теплообмен;

- несгоревшие метан и водород, которые могут скапливаться в топках и газоходах (дымоходах), образуя взрывоопасную смесь.  При нехватке воздуха происходит неполное сгорание топлива или, как говорят, процесс горения происходит с недожогом. Недожог может происходить также при плохом перемешивании газа с воздухом и низкой температуре в зоне горения.

Для полного сгорания газа необходимо: наличие в месте горения воздуха в достаточном количестве и хорошее смешение его с газом; высокая температуру в зоне горения.

Для обеспечения полного сгорания газа воздух подается в большем, чем требуется теоретически, количестве, т. е. с избытком, при этом не весь воздух примет участие в горении. Часть тепла уйдет на нагрев этого лишнего воздуха и будет выброшена в атмосферу вместе с дымовым газом.

Полнота сгорания определяется визуально (должно быть голубовато – синеватое пламя с фиолетовыми концами) или по анализу состава дымовых газов.

Теоретический (стехиометрический) объём воздуха для горения – это количество воздуха, необходимое для полного сжигания единицы объёма (1 м3 сухого газа или массы топлива, вычисляемое по химическому составу топлива).  

Действительный (фактический, необходимый) объём воздуха для горения – это количество воздуха, действительно израсходованное для сжигания единицы объёма или массы топлива.

Коэффициент избытка воздуха для горения α - это отношение фактического объёма воздуха для горения к теоретическому:      α = Vф/ Vт >1,

где: Vф - фактический объем подаваемого воздуха, м3

   Vт – теоретический объем воздуха, м3.

Коэффициент избытка показывает во сколько раз действительный расход воздуха на горение газа превышает теоретический изависит от конструкции газовой горелки и топки: чем они совершеннее, тем коэффициент α меньше. При коэффициенте избытка воздуха для котлов меньше 1 приводит к неполному сгоранию газа. Увеличение коэффициента избытка воздуха снижает к.п.д. газоиспользующей установки. Для ряда печей, где происходит плавка металла, во избежании кислородной коррозии – α < 1 и за топкой устанавливают камеру догорания не сгоревших горючих компонентов.

Для регулирования тяги применяются направляющие аппараты, шибера, поворотные заслонки и электромеханические муфты.

Преимущества газообразного топлива по сравнению с твёрдым и жидким  – низкая стоимость, облегчение труда персонала, низкое количество вредных примесей в продуктах сгорания, улучшение условий охраны природы, отсутствие необходимости в автомобильном и ж/д транспорте, хорошее перемешивание с воздухом (меньше α), полная автоматизация, высокий кпд.

Методы сжигания газа.Воздух, идущий на горение, может быть:

1) первичный, подается вовнутрь горелки, где перемешивается с газом (на горение идет газовоздушная смесь).

2) вторичный, поступает непосредственно в зону горения.

Различают следующие методы сжигания газа:

1. Диффузионный метод - газ и воздух на горение подаются раздельно и перемешиваются в зоне горения, т.е. весь воздух является вторичным. Пламя длинное, требуется большое топочное пространство. (рис. 7а).

 

Рис. 7. Методы сжигания газа: 1 – внутренний конус, горения нет из-за отсутствия кислорода; 2 – зона первичного горения; 3 – зона основного горения; 4 – горение отсутствует; 5 – продукты сгорания

2. Кинетический метод - весь воздух перемешивается с газом внутри горелки, т.е. весь воздух является первичным. Пламя короткое, требуется небольшое топочное пространство (рис. 7в).

3. Смешанный метод - часть воздуха подается вовнутрь горелки, где смешивается с газом (это первичный воздух), а часть воздуха подается в зону горения (вторичный). Пламя короче, чем при диффузионном методе (рис. 7б).

Удаление продуктов сгорания.Разрежение в топке и удаление продуктов сгорания производятся силой тяги, преодолевающей сопротивления дымового тракта и возникающей за счет разности давлений равных по высоте столбов наружного холодного воздуха и более легкого горячего дымового газа. При этом происходит движение дымовых газов из топки в трубу, а на их место в топку поступает холодный воздух (рис. 8).

Рис. 8. Действие тяги: 1 - установка; 2 – газоход; 3 – дымовая труба; 4 – шибер. А – давление столба дымовых газов. Б – давление столба холодного воздуха.

Сила тяги зависит от: температуры воздуха и дымовых газов, высоты, диаметра и толщины стенки дымовой трубы, барометрического (атмосферного) давления, состояния газоходов (дымоходов), присосов воздуха, разрежения в топке.

Естественная сила тяги - создается высотой дымовой трубы, и искусственная, которая - дымососом при недостаточной естественной тяге. Сила тяги регулируется шиберами, направляющими аппаратами дымососов и другими устройствами.

Коэффициент избытка воздуха (α) зависит от конструкции газовой горелки и топки: чем они совершеннее, тем коэффициент меньше и показывает: во сколько раз действительный расход воздуха на горение газа превышает теоретический.

Наддув – удаление продуктов сгорания топлива за счет работы дутьевых вентиляторов.При работе «под наддувом» необходима прочная плотная камера сгорания (топка), способная выдержать создаваемое вентилятором избыточное давление.

Газогорелочные устройства.Газовые горелки - обеспечивают подачу необходимого количества газа и воздуха, их перемешивание и регулирование процесса горения, а оборудованные тоннелем, воздухораспределительным устройством и т.д., называется газогорелочным устройством.

Требования к горелкам:

1) горелки должны отвечать требованиям соответствующего технического регламента (иметь сертификат или декларацию соответствия) или пройти экспертизу промышленной безопасности;

2) обеспечивать полноту сжигания газа при всех рабочих режимах с минимальным избытком воздуха (кроме некоторых горелок газовый печей) и минимальным выбросом вредных веществ;

3) иметь возможность применения автоматики регулирования и безопасности, а также измерения параметров газа и воздуха перед горелкой;

4) должны иметь простую конструкцию, быть доступными для ремонта и ревизии;

5) устойчиво работать в пределах рабочего регулирования, при необходимости иметь стабилизаторы для предотвращения отрыва и проскока пламени;

Параметры газовых горелок(рис. 9). Согласно ГОСТ 17356-89(Горелки газовые, жидкотопливные и комбинированные. Термины и определения. Изм. N 1) :Предел устойчивости работы горелки, при котором еще не возникают погасание, срыв, отрыв, проскок пламени и недопустимые вибрации.

Примечание. Существуют верхний и нижний пределы устойчивой работы.

Рис.9. Параметры работы горелки:1 - неустойчивая работа горелки; 2 - устойчивая работа горелки; 3- диапазон рабочего регулирования

1) Тепловая мощность горелки N г. – количество теплоты, образующееся в результате сжигания топлива, подводимого к горелке в единицу времени, Nг =V.Q ккал/ч, где V - часовой расход газа, м3/ч; Qн. - теплота сгорания газа, ккал/м3.

2) Пределы устойчивости работы горелки, при котором еще не возникают погасание, срыв, отрыв, проскок пламени и недопустимые вибрации. Примечание. Существуют верхний - Nв.п.  и нижний -Nн.п пределы устойчивой работы.

3) минимальная мощность Nмин. - тепловая мощность горелки, составляющая 1,1 мощности, соответствующей нижнему пределу её устойчивой работы, т.е. мощность низшего предела увеличенная на 10%, Nмин.=1,1Nн.п.

4) верхний предел устойчивой работы горелки Nв.п. – наибольшая устойчивая мощность, работа без отрыва и проскока пламени.

5) максимальная мощность горелки Nмак – тепловая мощность горелки, составляющая 0,9 мощности, соответствующей верхнему пределу ее устойчивой работы, т.е. мощность верхнего предела, уменьшенная на 10 %, Nмакс.= 0,9 Nв.п.

6) номинальная мощность Nном – наибольшая тепловая мощность горелки, когда эксплуатационные показатели соответствуют установленным нормам, т.е. наибольшая мощность, с которой горелка работает длительное время с высоким к.п.д.

7) диапазон рабочего регулирования (тепловой мощности горелки) – регламентированный диапазон, в котором может изменяться тепловая мощность горелки во время эксплуатации, т.е. значения мощностей от Nмин до Nном..

8) коэффициент рабочего регулирования Крр. – отношение номинальной тепловой мощности горелки к её минимальной рабочей тепловой мощности, т.е. показывает, во сколько раз номинальная мощность превышает минимальную: Kрр.= Nном./ Nмин

Режимная карта.Согласно «Правил пользования газом…», утверждённых ПП РФ от 17.05.2002 № 317(изм. 19.06.2017), по окончании строительно-монтажных работ на построенном, реконструированном или модернизируемом газоиспользующем оборудовании и оборудовании, переводимом на газ с других видов топлива, проводятся пусконаладочные и режимно-наладочные работы. Пуск газа на построенное, реконструированное или модернизированное газоиспользующее оборудование и оборудование, переводимое на газ с других видов топлива, для проведения пусконаладочных работ (комплексного опробования) и приемки оборудования в эксплуатацию производится на основании акта о готовности сетей газопотребления и газоиспользующего оборудования объекта капитального строительства к подключению (технологическому присоединению). Правилами установлено, что :

· газоиспользующее оборудование - котлы, производственные печи, технологические линии, утилизаторы и другие установки, использующие газ в качестве топлива в целях выработки тепловой энергии для централизованного отопления, горячего водоснабжения, в технологических процессах различных производств, а также другие приборы, аппараты, агрегаты, технологическое оборудование и установки, использующие газ в качестве сырья;

· пусконаладочные работы - комплекс работ, включающий подготовку к пуску и пуск газоиспользующего оборудования с коммуникациями и арматурой, доведение нагрузки газоиспользующего оборудования до согласованного с организацией - владельцем оборудования уровня, а также наладку топочного режима газоиспользующего оборудования без оптимизации коэффициента полезного действия;

·  режимно-наладочные работы - комплекс работ, включающий наладку газоиспользующего оборудования в целях достижения проектного (паспортного) коэффициента полезного действия в диапазоне рабочих нагрузок, наладку средств автоматического регулирования процессов сжигания топлива, теплоутилизирующих установок и вспомогательного оборудования, в том числе оборудования водоподготовки для котельных.

Согласно ГОСТ Р 54961-2012 (Системы газораспределительные. Сети газопотребления) рекомендуется:Режимы работы газоиспользующего оборудования на предприятиях и в котельных должны соответствоватьрежимным картам, утвержденным техническим руководителем предприятия и производятся не реже одного раза в три года с корректировкой (при необходимости) режимных карт.

Внеплановая режимная наладка газоиспользующего оборудования должна производиться в следующих случаях: после капитального ремонта газоиспользующего оборудования или внесения конструктивных изменений, влияющих на эффективность использования газа, а также при систематических отклонениях контролируемых параметров работы газоиспользующего оборудования от режимных карт.

Классификация газовых горелокСогласно ГОСТ газовые горелки классифицируются, по: способу подачи компонента; степени подготовки горючей смеси; скорости истечения продуктов сгорания; характеру потока смеси; номинальному давлению газа; степени автоматизации; возможности регулирования коэффициента избытка воздуха и характеристик факела; локализации зоны горения; возможности использования тепла продуктов сгорания.

В камерной топке газоиспользующей установки газообразное топливо сжигается в факеле.

По способу подачи воздуха горелки могут быть:

1) Атмосферные горелки – воздух поступает в зону горения непосредственно из атмосферы:

а. Диффузионные это самая простая по конструкции горелка, представляющая собой, как правило, трубу с насверленными в один или два ряда отверстиями. Газ поступает в зону горения из трубы через отверстия, а воздух - за счет диффузии и энергии струи газа (рис. 10), весь воздух - вторичный.

Рис.10. Диффузионная горелка: 1 – корпус горелки; 2 - кирпичная щель (стабилизатор).

Достоинства горелки: простота конструкции, надежность работы (невозможен проскок пламени), бесшумность работы, хорошее регулирование.

Недостатки: малая мощность, неэкономична, высокое (длинное) пламя,необходимыстабилизаторы горения для предотвращения погасания пламени горелки при отрыве.

б. Инжекционные - воздух инжектируется, т.е. подсасывается во внутрь горелки за счет энергии струи газа, выходящей из сопла. Струя газа создает в зоне сопла разрежение, куда через зазор между воздушной шайбой и корпусом горелки подсасывается воздух. Внутри горелки газ и воздух перемешиваются, и газовоздушная смесь поступает в зону горения, а остальной воздух необходимый для горения газа (вторичный), поступает в зону горения за счет диффузии (рис. 11, 12, 13).

В зависимости от количества инжектируемого воздуха различают инжекционные горелки: с неполным и полным предварительным смешением газа и воздуха.

В горелки среднего и высокого давления газа подсасывается весь необходимый воздух, т.е. весь воздух первичный, происходит полное предварительное смешение газа с воздухом. В зону горения поступает полностью готовая газовоздушная смесь и необходимость во вторичном воздухе отсутствует.

В горелки низкого давления подсасывается часть воздуха, необходимого для горения (происходит неполная инжекция воздуха, данный воздух первичный), а остальной воздух (вторичный) поступает непосредственно в зону горения.

Соотношение «газ – воздух» в указанных горелках регулируется положением воздушной шайбы относительно корпуса горелки. Горелки бывают однофакельные и многофакельные с центральной и периферийной подачей газа (БИГ и БИГм) состоящим из набора трубок - смесителей 1 диаметром 48х3, объединенных общим газовым коллектором 2 (рис. 13).

Рис.11. Инжекционная горелка односопловая, однофакельная, с центральной подачей газа, СД илиВД:1 – воздушная шайба; 2 – сопло выхода газа; 3 – корпус горелки; 4 – стабилизатор; 5 – пламя Рис. 12. Инжекционная горелка одно-сопловая, многофакельная, с централь-ной подачей газа, НД: 1 – воздушная шайба; 2 – сопло выхода газа; 3 – корпус горелки; 5 – пламя Рис. 13. Инжекционная горелка с пери-ферийной подачей газа: 1 – металический смеситель с четырьмя соплами диаметром 1.5 мм, под углом 25°; 2 - коллектор; 3 - керамический туннель - стабилизатор

Достоинства горелок: простота конструкции и регулирования мощности.

Недостатки горелок: высокий уровень шума, возможность проскока пламени, небольшой диапазон рабочего регулирования.

2) Горелки с принудительной подачей воздуха - это горелки, в которых воздух на горение поступает от вентилятора. Газ из газопровода поступает во внутреннюю камеругорелки (рис. 14).

Воздух, нагнетаемый вентилятором, подается в воздушную камеру 2, проходит через завихритель воздуха 4, закручивается и перемешивается в смесителе 5 с газом, который поступает в зону горения из газового канала 1 через газовыпускные отверстия 3.Сжигание происходит в керамическом тоннеле 7.

Рис. 14. Горелка с принудительной подачей воздуха: 1 – газовый канал; 2 – воздушный канал; 3 – газовыпускные отверстия; 4 – завихритель; 5 – смеситель; 6 – керамический туннель (стабилизатор горения). Рис. 15. Комбинированная однопоточная горелка:1 – вход газа; 2 – вход мазута; 3 – вход пара газовыпускные отверстия; 4 – вход первичного воздуха; 5 – вход вторичного воздуха смеситель; 6 – паромазутная форсунка; 7 – монтажная плита; 8 - завихритель первичного воздуха; 9 - завихритель вторичного воздуха; 10 - керамический туннель (стабилизатор горения); 11 – газовый канал; 12 - канал вторичного воздуха.

Достоинства горелок: большая тепловая мощность, широкий диапазон рабочего регулирования, возможность регулирования коэффициента избытка воздуха, возможность предварительного подогрева газа и воздуха.

Недостатки горелок: достаточная сложность конструкции; возможен отрыв и проскок пламени, в связи, с чем возникает необходимость применения стабилизаторов горения (керамический туннель).

Горелки, предназначенные для сжигания нескольких видов топлива (газообразного, жидкого, твердого), называются комбинированными(рис. 15). Они могут быть однопоточные и двухпоточные, т.е. с одним или несколькими подводами газа к горелке.

3) Блочная горелка – это автоматическая горелка с принудительной подочейвоздеха (рис. 16), скомпонованная с вентилятором  в единый блок. Горелка укомплектована системой автоматического регулирования.

Рис. 16. Блочная горелка Monarch WM-G 10: 1 – газовая заслонка; 2 – сервопривод газового дросселя; 3 - электрод контроля пламени; 4 – запальный электрод; 5 – смесительное устройство; 6 – электронный прибор зажигания; 7 – блок управления (менеджер горения, устройство управления и индикации); 8 - электродвигатель; 9 - вентиляционное колесо; 10 – воздушный дисковый затвор; 11 – защитная решетка; 12 – воздухосборник с шумоглушителем; 13 -  фланцы открываемые; 14 – реле давления газа; 15 - пламенная труба; 16 –подпорная шайба;

Управление процессом сжигания топлива в блочных горелках осуществляется электронным устройством, которое называется менеджером горения.

У горелок на жидком топливе в этот блок входит топливный насос или топливный насос и подогреватель топлива.

Блок управления (менеджер горения) управляет и контролирует работу горелки, получая команды от термостата (регулятора температуры), электрода контроля пламени и датчиков давления газа и воздуха.

Расход газа регулируется дисковым затвором, расположенным вне корпуса горелки.

Подпорная шайба отвечает за смешивание газа с воздухом в конической части пламенной трубы и используется для регулировки подводимого воздуха (регулировка со стороны напора). Другая возможность изменения количества подводимого воздуха заключается в изменении положения воздушного дискового затвора в корпусе регулятора воздуха (регулировка со стороны всасывания).

Регулирование соотношений газ – воздух (управление газовым и воздушным дисковыми затворами) может быть:

· связанным, от одного исполнительного механизма:

· частотным регулированием расхода воздуха, путём изменения частоты вращения электродвигателя вентилятора с применением инвертора, который состоит из частотного преобразователя и импульсного датчика.

Розжиг горелки производится автоматически прибором зажигания с помощью электрода зажигания. Наличие пламени контролируется электродом контроля пламени.

Рабочая последовательность включения горелки:

· запрос на выработку тепла (от термостата);

· включение электродвигателя вентилятора и предварительная вентиляция топки;

· включение электронного зажигания;

· открытие электромагнитного клапана, подача газа и розжиг горелки;

· сигнал датчика контроля пламени о наличии пламени.

· открытие электромагнитного клапана, подача газа и розжиг горелки;

· сигнал датчика контроля пламени о наличии пламени.

Аварии (инциденты) на горелках. Отрыв пламени - перемещение корневой зоны факела от выходных отверстий горелки по направлению течения топлива или горючей смеси. Происходит тогда, когда скорость газовоздушной смеси или газа становится больше скорости распространения пламени. Пламя отходит от горелки, становится неустойчивым и может погаснуть. Через погасшую горелку продолжает идти газ и в топке может образоваться взрывоопасная смеси.

Отрыв происходит при: повышении давления газа выше допустимого, резком увеличении подачи первичного воздуха, увеличении разрежения в топке. Для защиты от отрыва применяют стабилизаторы горения (рис. 17): кирпичные горки и столбики; керамические туннели различных типов и кирпичные щели; плохообтекаемые тела, которые при работе горелки накаляются (при погасании пламени свежая струя загорится от стабилизатора), а также специальные пилотные горелки.

Проскок пламени - перемещение зоны факела навстречу горючей смеси, при котором происходит проникновение пламени внутрь горелки. Это явление бывает только в горелках с предварительным смешением газа и воздуха и происходит, когда скорость газовоздушной смеси становится меньше скорости распространения пламени. Пламя проскакивает во внутрь горелки, где продолжает гореть, вызывая деформацию горелки от перегрева.

Рис. 17. Стабилизаторы горения: 1 - туннели; 2 – пилотный факел; 3 - плохо обтекаемые тела; 4 – кирпичные горки; 5 – пластинчатые стабилизаторы.

Проскок происходит при: снижении давления газа перед горелкой ниже допустимого; розжиге горелки при подаче первичного воздуха; большой подаче газа при низком давлении воздуха. При проскоке может произойти небольшой хлопок, в результате которого пламя погаснет, при этом через неработающую горелку может продолжать поступать газ и произойти образование взрывоопасной смеси в топке и газоходах газоиспользующей установки. Для защиты от проскока применяют пластинчатые или сетчатые стабилизаторы, т. к. через узкие щели и небольшие отверстия проскока пламени не бывает.

Действия персонала при аварии на горелках

При аварии на горелке (отрыв, проскок или погасание пламени) при розжиге или в процессе регулирования, необходимо: немедленно прекратить подачу газа на эту горелку (горелки) и запальное устройство; провентилировать топку и газоходы не менее 10 минут; выяснить причину неполадок; доложить ответственному лицу; после устранения причин неполадок и проверки герметичности затвора запорной арматуры перед горелкой, по указанию ответственного лица по инструкции произвести повторный розжиг.

Изменение нагрузки горелки.

Существуют горелки с различными способами изменения тепловой мощности:

Горелка с многоступенчатым регулированием тепловой мощности – это горелка, при работе которой регулятор расхода топлива может устанавливаться в нескольких положениях между максимальным и минимальным рабочими положениями.

Горелка с трехступенчатым регулированием тепловой мощности - это горелка, при работе которой регулятор расхода топлива может устанавливаться в положениях «максимальный расход» - «минимальный расход» - «закрыто».

Горелка с двухступенчатым регулированием тепловой мощности - горелка, работающая в положениях «открыто - закрыто».

Горелка с плавным регулированием - это горелка, при работе которой регулятор расхода топлива может устанавливаться в любом положении между максимальным и минимальным рабочими положениями.

Регулировать тепловую мощность установки можно количеством работающих горелок, если это предусмотрено заводом-изготовителем и режимной картой.

Изменение тепловой мощности вручную, во избежание отрыва пламени, производится:

- при увеличении: вначале увеличивать подачу газа, а затем воздуха.

- при уменьшении: вначале снижать подачу воздуха, а затем газа;

Для предотвращения аварий на горелках изменение их мощности необходимо производить плавно (в несколько приемов) согласно режимной карте.


Дата добавления: 2018-06-27; просмотров: 8038; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!