Цели образовательные и воспитательные изучения темы «Многоугольники».



1.    Продолжить раскрытие содержания геометрии как дедуктивной системы знаний:

а) построить систему определений основных фигур темы на основе логической связи их между собой;

б) раскрыть конструктивную природу определений многоугольника и угла с учетом нового подхода (как части плоскости);

в) раскрыть операционный состав единого математического приема неполной индукции, используемого при доказательстве основных утверждений темы, и степень строгости проводимых доказательств.

2. Систематизировать и обобщить некоторые метрические свойства многоугольников, рассмотренные ранее для треугольников в четырехугольников и в связи с окружностью.

3. Типизировать математические задачи, раскрыть операционный состав поиска решений задач определенных типов, показать практические приложения изучаемой в данной теме теории.

Непосредственными мотивами изучения этой темы могут быть следующие:

1) Весь понятийный аппарат темы составит основу понятийный аппарата темы «Многогранники» в курсе стереометрии.

2) Изучаемые свойства правильных многоугольников приме­няются при конструировании различных деталей (гайки восьмиугольные и шестиугольные) и сооружений (можно решить задачи № 21, 22, 40).

3) Теория и практика паркетов построена на свойствах много­угольников и особенно правильных многоугольников (статья А. Н. Колмогорова «Паркеты и правильные многоугольники», [72]).

4) На основе свойств правильных многоугольников можно решать интересные задачи на разбиение фигур (см.: Квант.—1982.— № 12). Решение таких задач развивает логическое и конструктив­ное мышление учащихся.

2. Логико-математический анализ темы. Материал в теме организован на дедуктивной основе, так как всем фигурам, вводимым в теме, даются определения. Можно проследить логическую цепочку в конструировании определений фигур.

Выстроенная цепочка позволяет решать вопросы раскрытия логического действия — конструирования определений объектов.

Математический анализ этой цепочки связанных понятий показывает, что наиболее трудными для объяснения будут понятия плоского и выпуклого многоугольников, так как здесь используются такие объекты, как часть плоскости и принадлежность прямой полуплоскости. Названные понятия вводятся на основе иллюстраций, и этот факт накладывает определенные требования на использование наглядности. Существенно новым и важным для данного курса геометрии является вводимое здесь понятие плоского угла. Так как по современной программе вопросы, связанные с длиной дуги и радианной мерой угла, изучаются в связи с изучением тригонометрических функций, то здесь данные понятия можно только актуализировать.

В теме доказывается четыре утверждения. Одно — о длине ломаной — фактически есть обобщение неравенства треугольника. Второе — о сумме углов выпуклого многоугольника — есть обобщение утверждения о сумме углов треугольника. Третье — конструктивная теорема существования правильного многоугольника. И четвертое дает в определенной мере обоснование числа .

В основе доказательства первых двух утверждений лежит идея обобщения неравенства треугольника и суммы углов треугольника, она же используется и как прием доказательства. От одного неравенства треугольника переходим к следующему звену и т. д. и индуктивно делаем общий вывод. Аналогичный прием и в двух следующих теоремах. Поэтому необходимо раскрыть операционный состав приема и суть умозаключения по индукции, чтобы были усвоены и действия, приводящие к обоснованию утверждения.

Значительные содержательные сложности скрыты в доказательстве теоремы об отношении длины окружности к диаметру, так как здесь неявно используется понятие предела. Опять важно использование средств наглядности, особенно здесь хорошо использовать мультфильм.

Факты, связывающие длину стороны правильного многоугольника с радиусом окружности, устанавливаются в значительной мере алгебраически.

Математические задачи, приведенные в учебнике, можно по соответствию теоретическим сведениям объединить в пять групп: первая группа задачи — № 1—7, вторая — № 8—18, третья № 19— 29, четвертая № 30—40, пятая № 41—47.

В соответствии с обязательными результатами решение «типичных» задач второй, третьей и четвертой групп должно быть хорошо отработано в классе и со всеми учащимися.

Для определения «типичных» задач необходимо наборы групп задач учебника сравнить с обязательными результатами и выделить их пересечение. В каждой из групп есть задачи, решая которые можно формировать основные элементы математической деятельности на школьном уровне. Из первой группы это задачи № 5, 7; из второй — № 9, 13, 14, 15, 16, 18; из третьей — № 23, 24, 25; из четвертой — № 38, 39.

Выделение основного («ядерного») материала темы, установление групп математических задач, соответствующих основному материалу, выделение «типичных» задач группы и задач, позволяющих обучать математической деятельности, позволяют определить основные учебные задачи и действия по их решению.

3. Учебные задачи и действия, им адекватные. Основной учебной задачей темы, как вытекает из целей обучения теме и анализа содержания учебного материала, может быть формирование нового понимания геометрической фигуры как части плоскости и раскрытие некоторых ее конструктивных и метрических свойств на основе решения математических задач.

При решении этой учебной задачи можно решить следующие подзадачи:

а) Раскрыть логическую структуру взаимосвязи определений фигур темы от ломаной до правильного многоугольника. Результатом решения этой подзадачи будет «цепочка» взаимосвязанных определений и умения конструировать их, выделяя родовое свойство и видовые отличия. Материал темы позволяет (сконцентрировано в одном месте восемь взаимосвязанных объектом) действие конструирования определений фигур сделать актуально значимым.

б) Раскрыть структуру приема доказательства утверждений по индукции. Результат решения — овладение последовательностью действий, составляющих прием доказательства по индукции.

в) Раскрыть соотношение между линейными и угловыми элементами правильных многоугольников и радиусами вписанной и описанной окружностей и конкретизировать его при решении математических задач. Результат решения — последовательность при применении формул к решению математических задач, так как эти действия в значительной мере однообразны во всех задачах. А именно эти задачи составляют основное содержание задач обязательных результатов обучения.

г) Раскрыть специфику получения формулы длины окружности (на основе интуитивного понимания понятия «близко» между периметрами вписанного и описанного правильных многоугольников) и применить ее к нахождению длин окружностей и их частей. Результат решения — понимание особого приема доказательства теоремы и последовательность операций по применению формулы в аналогичных задачах.

д) Овладеть приемами поиска решения математических путем использования общих приемов решения задач на доказательство и конкретных эвристик, использующих выведенные в теме свойств фигур. Результат решения – актуализированные общие приемы поиска решения задач на доказательство и специфические эвристики.

4. Средства и приемы обучения. Средства: модели плоских и неплоских ломаных; модели и чертежи многоугольников (выпуклых, невыпуклых, правильных, вписанных и т.п.); магнитная доска, складной метр; динамическая модель описанного и вписанного многоугольников; математические задачи как средство подведения под понятие фигуры и конкретизации теоретического факта; математические задачи как цель реализации математической деятельности на школьном уровне.

Приемы: использование графов для построения «родословной» понятия; составление пошагового доказательства теоремы 12.1 для создания возможностей переноса структуры доказательства на доказательство последующих теорем: 12.2 и 12.3; работа с учебником при доказательстве теорем 12.2 и 12.3; составление таблиц формул для и  через  и  и представление их в классе для постепенного, непроизвольного запоминания; набор эвристик при обучении поиску решения задач.


Дата добавления: 2018-05-13; просмотров: 508; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!