Корпускулярно-волновой дуализм  



Принципы естествознания: ■ Верификации- (от лат. verificatio — доказательство, подтверждение) - понятие, используемое в логике и методологии научного познания для обозначения процесса установления истинности научных утверждений посредством их эмпирической проверки. Проверка заключается в соотнесении утверждения с реальным положением дел с помощью наблюдения, измерения или эксперимента. Различают непосредственную и косвенную верификацию. При непосредственной В. эмпирической проверке подвергается само утверждение, говорящее о фактах действительности или экспериментальных данных. Однако далеко не каждое утверждение может быть непосредственно соотнесено с фактами, ибо большая часть научных утверждений относится к идеальным, или абстрактным, объектам. Такие утверждения верифицируются косвенным путем. Из данного утверждения мы выводим следствие, относящееся к таким объектам, которые можно наблюдать или измерять. Это следствие верифицируется непосредственно. В. следствия рассматривается как косвенная верификация того утверждения, из которого данное следствие было получено. Напримет, пусть нам нужно верифицировать утверждение «Температура в комнате равна 20°С». Его нельзя верифицировать непосредственно, ибо нет в реальности объектов, которым соответствуют термины «температура» и «20°С». Из данного утверждения мы можем вывести следствие, говорящее о том, что если в комнату внести термометр, то столбик ртути остановится у отметки «20». Мы приносим термометр и непосредственным наблюдением верифицируем утверждение «Столбик ртути находится у отметки "20"». Это служит косвенной В. первоначального утверждения. ■ Фальсификации -(от лат. falsus - ложный и facio - делаю) - методологическая процедура, позволяющая установить ложность гипотезы или теории в соответствии с правилом modus tollens классической логики. Понятие «фальсификация» следует отличать от принципа фальсифицируемости, который был предложен Поппером в качестве критерия демаркации науки от метафизики, как альтернатива принципу верифицируемости, принятому в неопозитивизме. Изолированные эмпирические гипотезы, как правило, могут быть подвергнуты непосредственной Ф. и отклонены на основании соответствующих экспериментальных данных, а также из-за их несовместимости с фундаментальными научными теориями. В то же время абстрактные гипотезы и их системы, образующие научные теории, непосредственно нефальсифицируемы. Дело в том, что эмпирическая проверка теоретических систем знания всегда предполагает введение дополнительных моделей и гипотез, а также разработку теоретических моделей экспериментальных установок и т.п. Возникающие в процессе проверки несовпадения теоретических предсказаний с результатами экспериментов в принципе могут быть разрешены путем внесения соответствующих корректировок в отдельные фрагменты испытываемой теоретической системы. Поэтому для окончательной Ф. теории необходима альтернативная теория: лишь она, а не сами по себе результаты экспериментов в состоянии фальсифицировать испытываемую теорию. Таким образом, только в том случае, когда имеется новая теория, действительно обеспечивающая прогресс в познании, методологически оправдан отказ от предшествующей научной теории. Сформулировав принцип фальсификации, Поппер следующим образом дополнил принцип верификации: а) Научно осмысленна такая концепция, которая удовлетворяет опытным фактам и для которой существуют воображаемые факты, способные при их обнаружении ее опровергнуть. Подобная концепция истинна. б) Научно осмысленна такая концепция, которая опровергается фактами и для которой существуют воображаемые факты, способные при их обнаружении ее подтвердить. Подобная концепция ложна. И.С. Шкловский в ставшей научным бестселлером книге «Вселенная, жизнь, разум» ввел плодотворный принцип, названный «презумпцией естественности». Согласно ему, всякое открытое явление считается автоматически естественным, если не будет совершенно надежно доказано обратное.    ■ Детерминизма- учения о первоначальной определяемости всех происходящих в мире процессов, включая все процессы человеческой жизни, со стороны Бога (теологический детерминизм, или учение о предопределении), или только явлений природы (космологический детерминизм), или специально человеческой воли (антропологическо-этический детерминизм), для свободы которой, как и для ответственности, не оставалось бы тогда места. Термин детерминации ввел в оборот философ-эллинист Демокрит в своей атомистической концепции, которая отрицала случайность, принимая ее просто за непознанную необходимость. С латинского языка термин детерминация переводится как определение, обязательная определяемость всех вещей и явлений в мире другими вещами и явлениями. С возникновением христианства, детерминизм выражается в двух новых понятиях - божественного предопределения и божественной благодати, и с этим новым, христианским детерминизмом сталкивается прежний принцип свободы воли. Дальнейшее развитие и обоснование детерминизм получает в естествознании и материалистической философии нового времени (Ф. Бэкон, Галилей, Декарт, Ньютон, Ломоносов, Лаплас, Спиноза, фр. материалисты XVIII в.). В соответствии с уровнем развития естествознания, детерминизм этого периода носит механистический, абстрактный характер. Это находит свое выражение в абсолютизации формы причинности, описывает динамические законы механики, что ведет к отождествлению причинности с необходимостью и отрицания объективного характера случайности. Наиболее выпукло такая точка зрения была сформулирована французским астрономом и математиком Лапласом (отсюда другое название механического детерминизма - лапласовский детерминизм), считавшим, что значение координат и импульсов всех частиц во вселенной в данный момент времени совершенно однозначно определяет ее состояние в любой прошедший или будущий момент. Опираясь на труды своих предшественников и на основополагающие идеи естествознания И. Ньютона и К. Линнея, Лаплас, в своей работе «Опыт философии теории вероятностей» (1814) довел идеи механистического детерминизма до логического конца: он исходит из постулата, согласно которому из знания начальных причин можно всегда однозначно вывести следствия. Методологический принцип детерминизма является одновременно и основополагающим принципом философского учения о бытии. Одной из фундаментальных онтологических идей, положенных в основу классического естествознания его создателями (Г. Галилей, И. Ньютон, И. Кеплер и др.), явилась концепция детерминизма. Эта концепция заключалась в принятии трех базовых утверждений: 1) природа функционирует и развивается в соответствии с имманентно присущими ей внутренними, «естественными» законами; 2) законы природы есть выражение необходимых (однозначных) связей между явлениями и процессами объективного мира; 3) цель науки, соответствующая ее предназначению и возможностям, - открытие, формулирование и обоснование законов природы. Классики естествознания считали, что принятие наукой концепции детерминизма «демаркирует» ее, с одной стороны, от религии и мистики, признающих «свободу воли» внешних, надприродных сил и их возможного вмешательства в ход природных процессов, а с другой - от представлений об объективной действительности как о хаосе, как о реальности, которой управляет господин «случай». Интересно отметить, что уже к началу того же самого XIX века под влиянием развития теории вероятностей (которой занимался П. Лаплас), социальной статистики и т.д. возник целый ряд вопросов, не разрешимых с позиций лапласовского детерминизма: 1. Как совместить его концепцию с эмпирическими наблюдениями, выявляющими отклонения от необходимости, отсутствие «чистого» проявления закона во всех его конкретных воплощениях? 2. Как совместить механизм лапласовского детерминизма с теорией вероятностей, оперирующей понятием «случайность»? Развитие познания в XIX-XX веках убедительно выявило ограниченность такого понимания. Укреплялось представление, что детерминация вызывается не только внешними причинами, что она не исчерпывается лишь количественной стороной дела и не обязательно является однозначной или хорошо определенной. Открытия в процессах биологической эволюции, развитии общества, наконец, в физике микромира иных, более сложных, диалектичных форм детерминации на какое-то время реанимировало концепцию индетерминизма - отрицания закономерностей и причинной обусловленности явлений. Так, кризис механистического материализма в физике на рубеже XIX и XX столетий включал в себя и кризис механистического или метафизического, детерминизма. Уже не в области философии, а на почве самой науки диалектически переосмысливались жесткие представления ученых о причинных связях и законах. Диалектизация принципа причинности шла в различных направлениях. В механистическом материализме простая схема причинности мыслилась как однозначное соответствие между причиной и следствием. Предполагалось, что одна и та же причина всегда производит одно и то же следствие, что имеется единственное следствие для каждой причины, однозначным образом вытекающее из этой причины. Уточнение простой схемы причинности, насыщение ее диалектикой происходило таким образом, что сначала была осознана роль условий: при одинаковых условиях выделенная причина всегда производит одно и то же следствие. Затем становится понятным, что одинаковых причин, условий и результатов не бывает. Поэтому происходит следующее уточнение: подобные причины при подобных условиях всегда производят подобные следствия. Наконец, слово «всегда» заменяется более точным «в большинстве случаев»: подобные причины при подобных условиях в большинстве случаев производят подобные следствия. Большинство случаев - это максимальная частота случаев. Тем самым от ньютоновской детерминации (в причине - одна возможность) совершается переход к статистической детерминации. Это делает изменение, развитие многовариантным, не заданным жестко, что не означает, однако, отсутствия детерминации, произвольного характера переходов. Среди многообразных форм детерминации, отражающих универсальную взаимосвязь и взаимодействие явлений в окружающем мире, особенно выделяется причинно-следственная, или каузальная (от лат. causa - причина) связь, знание которой ничем не заменимо для правильной ориентировки в практической и научной деятельности. Поэтому именно причина выступает важнейшим элементом системы детерминирующих факторов. И все же принцип детерминизма шире принципа каузальности: кроме причинно-следственных связей он включает в себя и другие виды детерминации (функциональные связи, связь состояний, целевую детерминацию и т.д.). ■ Дальнодействия (Ньютона) –передача взаимодействия через разделяющее тела пространство без материальных посредников. ■ Близкодействия– непосредственный контакт или передача взаимодействия с помощью посредника, несущего в себе импульс, например, обмен, когда один человек бросает другому тяжелый предмет, оба ощущают отдачу; скорость изменения импульса и будет силой. Для обозначения меры взаимодействия тел Ньютон ввел понятие приложенной силы, которая определяет ускорение тела. Причем среди взаимодействий можно выделить два типа: близкодействие и дальнодействие. Ньютон был противником концепции дальнодействия, однако наличие в природе таких явлений, как гравитация, электричество и магнетизм, не укладывалось в концепцию близкодействия. Принцип дальнодействия гласит, что если тело А, находящееся в точке а, действует на другое тело В, то тело В, находящееся в точке b, испытывает это воздействие в тот же момент. В МКМ (механической картине мира) было принято, что взаимодействие передается мгновенно, и промежуточная среда в передаче взаимодействия участия не принимает. Ньютон же считал необходимым наличие некоего передатчика этого действия, «агента», правда, допуская его, быть может, нематериальную природу. ■ Соответствия (Бора) –всякая неклассическая теория в соответствующем предельном случае переходит в классическую Постулаты Бора:  1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определенной орбите, с определенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е1, Е2, ..., Еn. Состояния эти характеризуется своей устойчивостью. Всякое изменение энергии в результате поглощения или испускания электромагнитного излучения может происходить только скачком из одного состояния в другое.  2. Электрон способен переходить с одной стационарной орбиты на другую. Только в этом случае он испускает или поглощает определенную порцию энергии монохроматического излучения определенной частоты. Эта частота зависит от уровня изменения энергии атома при таком переходе. Если при переходе электрона с орбиты на орбиту энергия атома изменяется от Еm до Еn, то испускаемая или поглощаемая частота определяется условием Эти постулаты Бор использовал для расчета простейшего атома (водорода), рассматривая первоначально наиболее простую его модель: неподвижное ядро, вокруг которого по круговой орбите вращается электрон. Объяснение спектра водорода было большим успехом теории Бора. Квантовые постулаты Бора были лишь первым шагом в создании теории атома, поэтому пришлось воспользоваться следующим приемом: сначала задача решалась при помощи классической механики (заведомо неприменимой полностью к внутриатомным движениям), а затем из всего непрерывного множества состояний движения, к которым приводит классическая механика, на основе квантовых постулатов отбирались квантовые состояния. Несмотря на все несовершенство этого метода, он привел к большим успехам — позволил объяснить сложные закономерности в атомных и молекулярных спектрах, осмыслить природу химических взаимодействий и др. Такой подход, по сути, является частным случаем общего принципа, играющего важную роль в современной теоретической физике.  ■ Относительности (Галилея) –никакими опытами нельзя обнаружить покоится система отсчета или движется равномерно и прямолинейно. Все подобные системы называют инерциальными (ИСО). Прямым следствием принципа относительности является принцип инвариантности законов природы к преобразованиям системы отсчета, в которой они были сформулированы. Принцип инвариантности утверждает, что вид основных уравнений, описывающих природные явления, не зависит от преобразования координат и времени, входящих в эти уравнения. Принцип относительности Галилея утверждает, что все ИСО с точки зрения механики совершенно равноправны (эквивалентны). Переход от одной ИСО к другой осуществляется на основе преобразований Галилея. Пусть имеется ИСО XYZ, относительно ее вдоль оси движется равномерно со скоростью V0 система X’Y’Z’. Пусть в момент t = 0 начала координат О и О’ совпадают. Тогда координаты т. М в этих двух системах в некоторый момент времени t будут связаны соотношениями: x = x'+Vоt;  y = y';  z = z'. Время везде течет одинаково, т.е. t = t', масса тел остается неизменной, т.е. m = m'. Для скоростей: Vx = Vо + V'x; Vy = V'y; Vz = V'z; Если время и скорости одинаковы и V0 - величина поcтоянная (из условия), то ax = a'x, и, следовательно, силы в обеих системах одинаковы (max = ma’x), значит, что все механические явления в ИСО протекают одинаково. Поэтому никакими механическими опытами нельзя отличить покой от равномерного прямолинейного движения. ■ Постоянства скорости света (300 тыс. км/сек) -скорость света в вакууме не зависит от скоростей движения источника и приемника, она одинакова во всех направлениях, во всех ИСО. ■ Глобального эволюционизма- Вселенная в целом и во всех своих проявлениях не может существовать вне развития. В концепции глобального эволюционизма подчеркивается важнейшая закономерность — направленность развития мирового целого на повышение своей структурной организации. Вся история Вселенной — от момента сингулярности до возникновения человека — предстает как единый процесс материальной эволюции, самоорганизации, саморазвития материи. Важную роль в концепции универсального эволюционизма играет идея отбора: новое возникает как результат отбора наиболее эффективных формообразований, неэффективные же инновации отбраковываются историческим процессом; качественно новый уровень организации материи окончательно самоутверждается тогда, когда он оказывается способным впитать в себя предшествующий опыт исторического развития материи. Эта закономерность характерна не только для биологической формы движения, но и для всей эволюции материи. Принцип глобального эволюционизма требует не просто знания временного порядка образования уровней материи, а глубокого понимания внутренней логики развития космического порядка вещей, логики развития Вселенной как целого. ■ Дополнительности (Бора) - принципиальное положение квантовой механики, согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата частицы и ее импульс (или скорость), потенциальная и кинетическая энергии и др. Рассмотрим простой пример, который хорошо иллюстрирует принцип дополнительности. Бор обратил внимание на очень простой и понятный факт: координату и импульс микрочастицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс микрочастицы и при этом не очень сильно его изменить, необходим очень легкий подвижный прибор. Но именно эта подвижность приводит к тому, что при попадании в такой прибор микрочастицы его положение будет весьма неопределенно. Для измерения координаты мы должны взять другой, очень массивный прибор, который не сдвинется с места при попадании в него микрочастицы. Но в этом случае произойдет изменение импульса микрочастицы, которое прибор даже не заметит. Это простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики микрообъекта – координату и импульс. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополняют друг друга. В соответствии с принципом дополнительности волновое и корпускулярное описания микропроцессов не исключают и не заменяют, а дополняют друг друга. Для формирования представления о микрообъекте необходим синтез этих двух описаний. Квантовый объект – это не частица и не волна, и даже не то и другое одновременно. Квантовый объект – это нечто третье, не равное простой сумме свойств волны и частицы (точно так же, как мелодия – больше, чем сумма составляющих ее звуков). Это квантовое «нечто» не дано нам в ощущение, тем не менее оно, безусловно, реально. У нас нет органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет все-таки ее познать. ■ Неопределенности (Гейзенберга) –фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики. Неопределенность значения координаты x неопределенность скорости > h/m, математическое выражение которого называется соотношением неопределенностей Гейзенберга:  Δx х Δv > h/m где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка, названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10–34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой. ■ Возрастания энтропии -всякие естественные процессы сопровождаются возрастанием энтропии Вселенной. Принцип возрастания энтропии справедлив для любой изолированной системы. Это обстоятельство указывает на асимметрию природных явлений, т.е. на однонаправленность происходящих в ней процессов. Раскрытие в дальнейшем более глубокого смысла энтропии, а также установление закона ее возрастания привело к целому ряду очень важных, далекоидущих следствий. Исследование энтропии в дифференциальной форме показало, что dS является полным дифференциалом, и, следовательно, энтропия не зависит от вида физического процесса, а определяется только состоянием системы. Поэтому энтропия является функцией состояния. Кроме того, оказалось, что с помощью энтропии удобно исследовать не только тепловые процессы, но и рассматривать процессы преобразования других видов энергии в тепловую. Так, механическая энергия в результате трения переходит в тепловую, электрический ток нагревает проводники тока, электромагнитное поле – среду, через которую оно распространяется, и т.д., т.е. все естественные процессы, в конечном счете, ведут к превращению всех видов энергии в тепловую. Постепенно возникло представление о качестве разных видов энергии и ее деградации с точки зрения качества. Под качеством энергии понимается возможность использования того или иного вида энергии для производства полезной работы. Сейчас принята следующая иерархия качества энергии в указанном смысле: ядерная, электромагнитная, химическая, механическая и тепловая энергии. При этом каждому виду энергии соответствует свое значение энтропии. Оно имеет минимальное значение для энергии высокого качества и возрастает при превращении всех видов энергии в тепловую и переходу системы в термодинамическое равновесие, при котором энтропия достигает максимальной величины.   2. Развитие представлений о материи: Корпускулярная (дискретная– «прерывистая») Дискретная (прерывистая) модель вещества. Материя – вещественная субстанция, состоящая из атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, обладают массой, весом. Континуальная– непрерывная Континуальная модель: материя – единое непрерывное поле с точечными силовыми центрами и волновыми движениями в нем; мир – электродинамическая система. Электрические заряды – дискретны.

Корпускулярно-волновой дуализм  

Корпускулярные свойства света проявляются в том, что свет излучается и поглощается порциями – квантами света. Корпускулярные свойства электромагнитных волн можно обнаружить в опытах по фотоэффекту. Волновые свойства корпускул были экспериментально продемонстрированы при дифракции электронов, интерференции и поляризации волн. Основу квантовой механики легла гипотеза о том, что электромагнитное излучение испускается отдельными порциями – квантами.

Материя обладает и корпускулярными и волновыми свойствами. Поле от вещества отличается тем, что масса покоя квантов поля равна нулю. Длина волны частицы не зависит от скорости. Состояние системы в квантовой механике описывает волновая или пси-функуция. Закон сохранения энергии, закон сохранения импульса описывают поведение как корпускулярной, так и волновой формы материи. Корпускулярные свойства материи проявляются через дискретность, квантованность, инерциальность.

 

3. Развитие представлений о движении:

Формы движения материи (4): механическая, физическая, химическая, биологическая. Общей мерой различных форм движения является энергия. Взаимосвязь форм движения и их несводимость друг к другу.

Формы движения материи - основные типы движения и взаимодействия материальных объектов, выражающие их целостные изменения. Каждому телу присуще не одна, а ряд форм движения материи.

В научной классификации форм движения материи необходимо учитывать:

1) специфику материальных объектов - носителей движения;

2) наличие общих законов для данной формы движения;

3) закономерности исторического развития материи и движения от простейших до наиболее сложных форм.

Основные формы движения материи:

1) Механическое движение, связанное с перемещением тел в пространстве.

2) Физическое (по существу тепловое) движение, как движение молекул.

3) Химическое движение - движение атомов внутри молекул.

4) Органическое или биологическое движение, связанное с развитием белковой формы жизни.

Механическое движение  -  это изменение положения тела в пространстве относительно других тел.

Виды:


Дата добавления: 2018-05-13; просмотров: 428; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!