Основные теоретические сведения



Практическая работа №3

Тема:Применение электротехнических материалов

Цель:закрепление теоретических знаний по теме: «Материалы с особыми электрическими свойствами»

Теоретические сведения

По электрическим свойствам материалы делятся на диэлектрики, полупроводники, проводники и сверхпроводники. Они отличаются друг от друга электрической проводимостью и её механизмом, характером зависимости электрического сопротивления от температуры.

Диэлектрики. Это вещества, которые не обладают хорошей электронной проводимостью и поэтому являются изоляторами. Диэлектрики имеют удельное электрическое сопротивление в интервале от 108 до 1016 Ом∙м. Некоторые из них также как и металлы имеют кристаллическую структуру. Вид химической связи в диэлектриках, в основном, ионный или ковалентный. Свободные носители заряда отсутствуют. Между валентной зоной и зоной проводимости находится широкая запрещенная зона. К диэлектрикам относятся полимерные материалы: соли, оксиды, полиэтилен, резина, текстильные материалы.

Диэлектрики, такие как керамика, стекло, пластмассы обладают высокой диэлектрической проницаемостью, значения которой находятся в пределах от 2 до 20. Но отдельные диэлектрики имеют значения относительной диэлектрической проницаемости около тысячи и выше. Такие диэлектрики называются сегнетоэлектриками.

 

Рис. 1. Схема расположения энергетических зон в металле (а), полупроводнике (б), изоляторе (в).

Полупроводники. Полупроводники занимают промежуточное положение между изоляторами и проводниками, они отличаются как от металлов, так и от изоляторов. При низких температурах электрическое сопротивление полупроводников велико и они в этом отношении похожи на диэлектрики, хотя зависимость удельного электрического сопротивления от температуры у них отличается от таковой для изоляторов. При нагревании электрическая проводимость полупроводников растет, достигая величин, характерных для металлов.

Полупроводники имеют удельное электрическое сопротивление от 10-5 до 108 Ом∙м. К полупроводникам относятся B, C, Si, Ge, Sn, P, As, Sb, S, Se, Te, I. Полупроводниками являются такие бинарные соединения ZnO, FeO, ZnS, CdS, GaAs, ZnSb, SiC, а также более сложные соединения.

Ширина запрещенной зоны в полупроводниках изменяется от 0,08 эВ (у металла Sn) до 5,31 эВ (неметалла алмаз). Зависимость электрических свойств полупроводников от температуры и освещенности объясняется электронным строением их кристаллов. У них, как и у изоляторов, валентная зона отделена от зоны проводимости запрещенной зоной (рис. 1). Однако ширина запрещенной зоны в случае полупроводников существенно меньше, чем у диэлектриков. Благодаря этому при действии облучения или при нагревании, электроны, занимающие верхние уровни валентной зоны, могут переходить в зону проводимости и участвовать в переносе электрического тока. С повышением температуры и увеличением освещенности число электронов, переходящих в зону проводимости, возрастает, что приводит к росту электрической проводимости полупроводника.

В полупроводниках с ковалентной связью появление электрона в зоне проводимости одновременно создает его вакансию в валентной зоне. Данные вакансии называются дырками. Они могут участвовать в движении под действием электрического поля. Поэтому электрический ток в полупроводниках определяется движением электронов в зоне проводимости и движением дырок в валентной зоне. В первом случае электроны переходят на незанятые молекулярные орбитали, во втором – на частично занятые молекулярные орбитали.

Из простых полупроводников наиболее распространены кремний и германий. Полупроводники применяются в радиоэлектронных приборах.

Проводники. Это вещества, которые проводят электрический ток. К проводникам относятся металлы. Удельное электрическое сопротивление проводников изменяется от 10-8 до 10-5 Ом∙м. С повышением температуры электрическое сопротивление увеличивается, этим они и отличаются от полупроводников. Носителями заряда в проводниках являются электроны. Валентная зона и зона проводимости электронной структуры металлов пересекаются (рис. 1 а). Это позволяет электронам из валентной зоны переходить при небольшом возбуждении на молекулярные орбитали зоны проводимости.

Проводники применяются для передачи электрической энергии на большие расстояния, в качестве резисторов, нагревательных элементов, осветительных приборов.

Сверхпроводники. Материалы, у которых электрическое сопротивление при некоторой критической температуре резко уменьшается до нуля, называются сверхпроводниками. У обычных веществ падение электрического сопротивления практически до нуля возможно только при низких температурах. Например, у ртути она составляет 4,2 К. Поэтому широкое практическое использование сверхпроводимости нецелесообразно, так как связано с большими энергетическими затратами на охлаждение до очень низких температур.

В 1988 году было открыто явление высокотемпературной сверхпроводимости. Найдены такие вещества, которые проявляют сверхпроводящие свойства при достаточно высоких температурах порядка 90 – 135 К. Такие температуры могут быть достигнуты в среде жидкого азота. Это открывает возможности практического использования явления сверхпроводимости.

Высокотемпературные свойства обнаружены у следующих веществ: Y-Ba-Cu-O (Tc = 90 K), Bi - Ca – Cu – O (Tc = 110 K), Hg – Ba – Ca – Cu – O (Tc = 135 K).

В настоящее время ведутся поиски новых систем, которые могли бы находиться в сверхпроводящем состоянии при температурах кипения диоксида углерода, которая равна 194,7 К.

 

Содержание отчета:

1 Тема

2 Цель

3. Ответы на контрольные вопросы.

Контрольные вопросы:

1 Характеристика проводниковых материалов, область их применения

2 Характеристика полупроводниковых материалов, область их применения

3Характеристика диэлектриков, область их применения

 

 

 

                                            Практическая работа №9

Тема:Технология получения деталей из порошков

 

 

Цель:закрепить теоретические знания о технологии получения изделий методом порошковой металлургии, определить целесообразность применения данной технологии в промышленности

Задание:

       Составить технологическую схему получения детали «втулка» методом порошковой металлургии

 

Ход работы:

1 Составить схему технологического процесса получения заданной детали методом порошковой металлургии:

- определить конструктивные особенности заданной детали;

- выполнить эскиз заданного изделия;

- составить схему технологического процесса получения изделия.

 

2 Оформить письменный отчет по практической работе по плану:

2.1 Тема

2.2 Цель

2.3 Задание

2.4 Технологическая схема процесса получения заданного изделия методом порошковой металлургии

2.5 Вывод по работе: описать достоинства и недостатки данного метода получения изделий

 

3 Устный отчет по контрольным вопросам:

3.1 Дать определение порошковой металлургии

3.2 Основные стадии технологического процесса получения изделий методом порошковой металлургии

3.3 Материалы ,применяемые в порошковой металлургии

3.4 Основные достоинства и недостатки данного метода

3.5 Характеристика свойств изделий, получаемых методом порошковой металлургии

Основные теоретические сведения

Одним из основных направлений развития технологии машиностроения в настоящее время является совершенствование существующих и разработка новых безотходных, материалосберегающих производственных процессов, т. е. таких процессов, которые обеспечивают получение заготовок с минимальными припусками под последующую механическую обработку либо вообще без них при одновременном снижении расхода дефицитных материалов. В решении этой проблемы определенная роль принадлежит порошковой металлургии.

Порошковая металлургия — это отрасль техники, включающая изготовление порошков из металлов и их сплавов и получение из них заготовок и изделий без расплавления основного компонента. Методами порошковой металлургии можно создавать материалы из различных компонентов с резко отличающимися свойствами и температурами плавления, новые материалы с разнообразным комплексом физико-механических свойств. Порошковая металлургия используется как для создания принципиально новых материалов и изделий из них, так и для изготовления самой широкой номенклатуры конструкционных деталей общего назначения.

В настоящее время расширяется сфера применения порошковой металлургии в различных областях промышленности, совершенствуется ее технология. Относительно небольшие производственные расходы на получение изделий из порошковых материалов в сочетании с возможностью придания им заданных свойств, окончательной формы и размеров практически без проведения механической обработки выдвинули порошковую металлургию в ряд наиболее эффективных и перспективных технологий. Эта технология успешно конкурирует с литьем, обработкой давлением, резанием и другими методами обработки металлов, дополняя или заменяя их.

 


Дата добавления: 2018-05-12; просмотров: 329; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!