Устройство трансформатора: магнитопровод, обмотки, бак масляного трансформатора, арматура бака.



История развития трансформаторов.В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, которое легло в основу работы трансформатора. В этом же году появилось его схематическое изображение . Хоть Фарадей в своих опыта и использовал подобие современного трансформатора, однако основное свойство трансформатора – трансформация токов и напряжений, было открыто позже.Электромагнитная индукция – это явление возникновения электрического тока (индукционного тока) в замкнутом проводнике(контуре) при воздействии на него изменяющегося во времени магнитного поля. При этом для реализации этого явления не важно, движется проводник или источник магнитного поля. Благодаря этому явления стала возможна работа электрогенераторов и других электрических машин. В 1848 году французским механиком Г.Румкорфом была изобретена индукционная катушка (индуктивность) – прообраз трансформатора. Датой же рождения первого трансформатора считается 30 ноября 1876 года, когда русский изобретатель П. Н. Яблочков получил патент на трансформатор с разомкнутым сердечником. Это был стержень с намотанными на него обмотками. В 1884 году в Англии братьями Джоном и Эдуардом Гопкинсонами был создан первый трансформатор с замкнутым сердечником. В конце 1880-х инженером Д. Свинберном было изобретено масляное охлаждение трансформатора – это повысило надежность и долговечность его обмоток. В 1889 году русский электротехник М. О. Доливо-Добровольский вместе с предложенной им трехфазной системой переменного тока создал первый трехфазный трансформатор. Дальнейшее развитие трансформаторов сводилось к усовершенствованию материала сердечника, что позволило снизить потери и значительно увеличить эффективность трансформаторов.  

Назначение и роль трансформаторов в энергетике.

Самым распространенным применение трансформаторов является использование их при передаче электроэнергии. Используемые силовые трансформаторы способны повышать напряжение до 500 кВт. В электросетях трансформаторы эффективно выполняют свои функции, например, напряжение они могут регулировать как в автоматическом режиме, так и под нагрузкой.

Существует множество видов трансформаторы, которые являются как общими для разных отраслей, так и специальными. Так трансформаторы используются не только в энергетической промышленности. Даже в строительстве, транспорте, специальных видах промышленного производства и т.д. используются трансформаторы как неотъемлемая часть производства.

Широко используются измерительные и испытательные трансформаторы. Силовые трансформаторы имеют большую долю в структуре видов используемых трансформаторов. Они занимают больший удельный вес и в самом трансформаторостроении, но также активно производятся различные аппараты, используемые, например, в линиях электропередач.

Каждый производимый трансформатор имеет свои особенности. К тому же каждая произведенная единица может иметь вес от нескольких десятков килограмм до нескольких десятков сотен. Вес трансформатора определяется его мощностью, так небольшая мощность соответствует небольшому весу трансформатора.

Роль трансформатора в процессе передачи и распределения электроэнергии

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей.

Устройство трансформатора: магнитопровод, обмотки, бак масляного трансформатора, арматура бака.

Магнитная система (магнитопровод) трансформатора выполняется из электротехнической стали, пермаллоя, феррита или другого ферромагнитного материала в определённой геометрической форме. Предназначается для локализации в нём основного магнитного поля трансформатора. Магнитопровод в зависимости от материала и конструкции может набираться из пластин, прессоваться, навиваться из тонкой ленты, собираться из 2, 4 и более «подков». Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора.

Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется стержнем.
Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется ярмом[1].

Основным элементом обмотки является виток — электрический проводник или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Обмотка — совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.

Бак в первую очередь представляет собой резервуар для трансформаторного масла, а также обеспечивает физическую защиту для активного компонента. Он также служит в качестве опорной конструкции для вспомогательных устройств и аппаратуры управления.

Перед заполнением маслом бака с активным компонентом, из из него выкачивается весь воздух, который может подвергнуть опасности диэлектрическую прочность изоляции трансформатора (поэтому бак предназначен для выдерживания давления атмосферы с минимальной деформацией).

При увеличении номинальной мощности трансформатора воздействие больших токов внутри и снаружи трансформатора оказывает влияние на конструкцию. То же самое происходит с магнитным потоком рассеяния внутри бака. Вставки из немагнитного материала вокруг сильноточных проходных изоляторов снижают риск перегрева. Внутренняя облицовка бака из высокопроводящих щитков не допускает попадания потока через стенки бака. С другой стороны, материал с низким магнитным сопротивлением поглощает поток перед его прохождением через стенки бака.

Ещё одним явлением, учитываемым при проектировании баков, является совпадение звуковых частот, вырабатываемых сердечником трансформатора, и частот резонанса деталей бака, что может усилить шум, излучаемый в окружающую среду.


Дата добавления: 2018-05-12; просмотров: 1325; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!