ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ

Основные формулы по предмету физика

КИНЕМАТИКА

• Положение материальной точки в пространстве задается радиусом-векторомг:

 


где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

где t — время.

• Средняя скорость

 

где — перемещение материальной точки за интервал времени.

Средняя путевая * скорость

 

где  — путь, пройденный точкой за интервал времени .

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

 

• Ускорение

 

       где проекции ускорения a на оси

координат.

· См. об этом термине, например, в кн.: Детлаф А. А. и др. Курс физики. М., 1973. Т. I. С. 17.

Модуль ускорения


При криволинейном движении ускорение можно представить как сумму нормальной  и тангенциальной  составляющих (рис.1.1):

Модули этих ускорений:

где R — радиус кривизны в данной точке траектории.

• Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где  — начальная координата; t — время. При равномерном движении

v=const и a=0.

• Кинематическое уравнение равнопеременного движения( )вдоль оси x

где v0 —начальная скорость;t— время.

Скорость точки при равнопеременном движении

v=v0+at.

• Положение твердого тела (при заданной оси вращения) определяется углом поворота (или угловым перемещением) .

Кинематическое уравнение вращательного движения

• Средняя угловая скорость

где  — изменение угла поворота за интервал времени . Мгновенная угловая скорость *

• Угловое ускорение *

• Кинематическое уравнение равномерного вращения

где —начальное угловое перемещение;t—время. При равномерном вращении =const и =0.

* Угловая скорость и угловое ускорение являются аксиальными векторами, их направления совпадают с осью вращения.


Частота вращения

n=N/t, или n=1/T,

гдеN — число оборотов, совершаемых телом за время t; Т — период вращения (время одного полного оборота).

• Кинематическое уравнение равнопеременного вращения ( = const.)

где —начальная угловая скорость;t—время.

Угловая скорость тела при равнопеременном вращении

.

• Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами:

путь, пройденный точкой по дуге окружности радиусом R,

s= R (  — угол поворота тела);

скорость точки линейная

ускорение точки:

тангенциальное

нормальное

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И ТЕЛА, ДВИЖУЩИХСЯ ПОСТУПАТЕЛЬНО

 Уравнение движения материальной точки (второй закон Ньютона):

в векторной форме

или

где геометрическая сумма сил, действующих на материальную точку; т — масса; а — ускорение;p=mv импульс; N — число сил, действующих на точку;

в координатной форме (скалярной)

или , ,

где под знаком суммы стоят проекции силFi, на соответствующие оси координат.

• Сила упругости *

Fупр=-kx,


где k — коэффициент упругости (жесткость в случае пружины);

х — абсолютная деформация.

 Сила гравитационного взаимодействия *

где G — гравитационная постоянная; m1 и m2 — массы взаимодействующих тел, рассматриваемые как материальные точки; r расстояние между ними.

 Сила трения скольжения

Fтр=fN,

гдеf — коэффициент трения скольжения;N — сила нормального давления.

• Координаты центра масс системы материальных точек

, ,

где mi — масса i-й материальной точки; xi,yi;,zi; — ее координаты.

• Закон сохранения импульса

 или

гдеN — число материальных точек (или тел), входящих в систему.

• Работа, совершаемая постоянной силой,

, или ,

где  — угол между направлениями векторов силы F и перемещения r.

• Работа, совершаемая переменной силой,

где интегрирование ведется вдоль траектории, обозначаемойL.

• Средняя мощность за интервал времени t

.

• Мгновенная мощность

,или N=Fvcos ,

где dA — работа, совершаемая за промежуток времени dt.

• Кинетическая энергия материальной точки (или тела), движущейся поступательно,

T=mv2/2, или T=p2/(2m).

• Потенциальная энергия тела и сила, действующая на тело в данной точке поля, связаны соотношением

F= - grad П или ,

гдеi,j, k — единичные векторы (орты). В частном случае, когда

* См. сноску на с. 19.

поле сил обладает сферической симметрией (как, например, гравитационное),

• Потенциальная энергия упругодеформированного тела (сжатой или растянутой пружины)

П=kx2/2.

 Потенциальная энергия гравитационного взаимодействия двух материальных точек (или тел) массами m1, и т2, находящихся на расстоянии r друг от друга,

• Потенциальная энергия тела, находящегося в однородном поле силы тяжести,

П=mgh,

где h — высота тела над уровнем, принятым за нулевой для отсчета потенциальной энергии. Эта формула справедлива при условии h<<R, где R — радиус Земли.

• Закон сохранения энергии в механике выполняется в замкнутой системе, в которой действуют только консервативные силы, и записывается в виде

T+П== const.

• Применяя законы сохранения энергии и импульса к прямому центральному удару шаров, получаем формулу скорости абсолютно неупругих шаров после удара

 и формулы скорости абсолютно упругих шаров после удара:

где m1 и m2 — массы шаров; v1 и v2 — их скорости до удара.

 

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ

• Момент силыF, действующей на тело, относительно оси вращения

,

где  — проекция силыF на плоскость, перпендикулярную оси вращения;l — плечо силыF (кратчайшее расстояние от оси вращения до линии действия силы).

• Момент инерции относительно оси вращения:

а) материальной точки        

J=mr2,

где т — масса точки; r — расстояние ее от оси вращения;

б) дискретного твердого тела

где  — массаi-го элемента тела;ri — расстояние этого элемента от оси вращения; п — число элементов тела;

в) сплошного твердого тела            

Если тело однородно, т. е. его плотность  одинакова по всему объему, то

dm= dV и

гдеV — объем тела.

• Моменты инерции некоторых тел правильной геометрической формы:

Тело Ось, относительно которой определяется момент инерции Формула момента инерции
Однородный тонкий стержень массой т и длинойl   Тонкое кольцо, обруч, труба радиусом R и массой т, маховик радиусомR и массой т, распределенной по ободу   Круглый однородный диск (цилиндр) радиусомR и массой т Однородный шар массой т и радиусомR Проходит через центр тяжести стержня перпендикулярно стержню Проходит через конец стержня перпендикулярно стержню Проходит через центр перпендикулярно плоскости основания   Проходит через центр диска перпендикулярно плоскости основания Проходит через центр шара 1/12ml2   1/3ml2 mR2   1/2mR2   2/5mR2

Теорема Штейнера. Момент инерции тела относительно произвольной оси

J=J0+ma2,

где J0 момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно заданной оси; а — расстояние между осями; m — масса тела.

• Момент импульса вращающегося тела относительно оси

L=J .

• Закон сохранения момента импульса

где Li момент импульса i-го тела, входящего в состав системы. Закон сохранения момента импульса для двух взаимодействующих тел

где — моменты инерции и угловые скорости тел до взаимодействия: — те же величины после взаимодействия.

Закон сохранения момента импульса для одного тела, момент инерции которого меняется,

где — начальный и конечный моменты инерции;  —• начальная и конечная угловые скорости тела.

• Основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси

Mdt=d(J ), где М — момент силы, действующей на тело в течение времени dt;

J — момент инерции тела; — угловая скорость; J момент импульса.

Если момент силы и момент инерции постоянны, то это уравнение записывается в виде

М t=J .

В случае постоянного момента инерции основное уравнение динамики вращательного движения принимает вид

M=J , где  — угловое ускорение.

• Работа постоянного момента силы М, действующего на вращающееся тело,

A=Mj,

где j — угол поворота тела.

• Мгновенная мощность, развиваемая при вращении тела,

N=M .

• Кинетическая энергия вращающегося тела

T=1/2J .


• Кинетическая энергия тела, катящегося по плоскости без скольжения,

T==1/2mv2+l/2J ,

гдеl/2mv2 кинетическая энергия поступательного движения тела; v — скорость центра инерции тела; l/2J ,— кинетическая энергия вращательного движения тела вокруг оси, проходящей через центр инерции.

• Работа, совершаемая при вращении тела, и изменение кинетической энергии его связаны соотношением

.

• Величины, характеризующие динамику вращательного движения, и формулы, описывающие это движение, аналогичны соответствующим величинам и формулам поступательного движения.

Эта аналогия раскрывается следующей таблицей:

 

Поступательное движение                             Вращательное движение

 


Основной закон динамики

F t=mv2mv1;                                                     M t=J —J ;

F = та                                                                  М = .J

Закон сохранения

импульса                                                        момента импульса

Работа и мощность

A=Fs;                                                             А=М ,

N=FvN=M

Кинетическая энергия

Т =1/2mv2T=1/2J

 

СИЛЫ В МЕХАНИКЕ

• Закон всемирного тяготения

где F — сила взаимного притяжения двух материальных точек; m1 и m2 — их массы; r — расстояние между точками; G — гравита­ционная постоянная.

В написанной форме закон всемирного тяготения можно приме­нять и к взаимодействию шаров, масса которых распределена сфери­чески-симметрично. В этом случае r есть расстояние между центра­ми масс шаров.

• Напряженность гравитационного поля

где F — сила тяготения, действующая на материальную точку массы m, помещенную в некоторую точку поля.

• Напряженность гравитационного поля, создаваемого плане­той, массу М которой можно считать распределенной сферически-симметрично,

где r — расстояние от центра планеты до интересующей нас точки поля, находящейся вне планеты.

• Ускорение свободного падения на высоте h над поверхно­стью Земли

где R — радиус Земли; g — ускорение свободного падения на по­верхности Земли. Если , то

• Потенциальная энергия гравитационного взаимодействия двух материальных точек массами m1 и m2 (шаров с массой, распре­деленной сферически симметрично), находящихся на расстоянии r друг от друга,

(Потенциальная энергия бесконечно удаленных друг от друга ма­териальных точек принята равной нулю.)

• Потенциал гравитационного поля

где П — потенциальная энергия материальной точки массой m, помещенной в данную точку поля.

• Потенциал гравитационного поля, создаваемого планетой, массу М которой можно считать распределенной сферически-сим­метрично,

где r — расстояние от центра планеты до интересующей нас точки поля, находящейся вне планеты.

• Законы Кеплера.

1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

2. Радиус-вектор планеты в равные времена описывает одинако­вые площади.

3. Квадраты периодов обращения любых двух планет относятся как кубы больших полуосей их орбит:

Законы Кеплера справедливы также для движения спутников вокруг планеты.

• Относительная деформация при продольном растяжении или сжатии тела

где ε — относительное удлинение (сжатие); x — абсолютное удли­нение (рис. 4.1); l — начальная длина тела.

 

Относительная деформация при сдвиге определяется из формулы

Рис. 4.1                                               Рис. 4.2

 

где — относительный сдвиг; Δs — абсолютный сдвиг параллель­ных слоев тела относительно друг друга (рис. 4.2); h — расстояние между- слоями; — угол сдвига. (Для малых углов )

• Напряжение нормальное

где Fynp — упругая сила, перпендикулярная поперечному сечению тела; S — площадь этого сечения.

Напряжение тангенциальное

где Fynp — упругая сила, действующая вдоль слоя тела; S — площадь этого слоя.

• Закон Гука для продольного растяжения или сжатия

 или ,где k — коэффициент упругости (в случае пружины — жесткость); Е — модуль Юнга.

Закон Гука для сдвига

 , или ,где G — модуль поперечной упругости (модуль сдвига).

• Момент, закручивающий на угол φ однородный круглый стер­жень,

,

где С — постоянная кручения.

• Работа, совершаемая при деформации тела,

• Потенциальная энергия растянутого или сжатого стержня

 , или , или ,где V — объем тела.

РЕЛЯТИВИСТСКАЯ МЕХАНИКА.

Основные формулы

В специальной теории относительности рассматриваются только инерциальные системы отсчета. Во всех задачах считается, что оси у, у' и z, z' сонаправлены, а относительная скорость υ0 системы ко­ординат К' относительно системы К нап­равлена вдоль общей оси хх' (рис. 5.1).

• Релятивистское (лоренцево) сок­ращение длины стержня

Рис. 5.1

где l0 — длина стержня в системе коор­динат К' ,относительно которой стержень покоится (собственная длина). Стержень параллелен оси х';l—

 

длина стержня, измеренная в системе К, относительно которой он движется со скоростью υ; с — скорость распространения электромагнитного излучения.


• Релятивистское замедление хода часов

 

где Δt0 — интервал времени между двумя событиями, происходя­щими в одной точке системы K', измеренный по часам этой системы (собственное время движущихся часов); Δt — интервал времени между двумя событиями, измеренный по часам системы K.

• Релятивистское сложение скоростей

 ,

где υ' — относительная скорость (скорость тела относительно си­стемы K'); υ0 — переносная скорость (скорость системы K' относи­тельно К), υ0 — абсолютная скорость (скорость тела относительно системы К).

В теории относительности абсолютной скоростью называется скорость тела в системе координат, условно принятой за непод­вижную.

• Релятивистская масса

 , ИЛИ ,где т0 — масса покоя; β — скорость частицы, выраженная в долях скорости света

• Релятивистский импульс

 , или

• Полная энергия релятивистской частицы

где Т — кинетическая энергия частицы; — ее энергия покоя. Частица называется релятивистской, если скорость частицы сравнима со скоростью света, и классической, если υ<<с.

• Связь полной энергии с импульсом релятивистской частицы

• Связь кинетической энергии с импульсом релятивистской частицы

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

• Уравнение гармонических колебаний

где х — смещение колеблющейся точки от положения равновесия;
t — время; А, ω, φ— соответственно амплитуда, угловая частота,
начальная фаза колебаний;    — фаза колебаний в момент t.

• Угловая частота колебаний

 , или ,где ν и Т — частота и период колебаний.

• Скорость точки, совершающей гармонические колебания,

• Ускорение при гармоническом колебании

• Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a1и А2амплитуды составляющих колебаний; φ1 и φ2— их начальные фазы.

• Начальная фаза φ результирующего колебания может быть найдена из формулы

• Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν1 и ν2,

• Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A1 и A2 и начальны­ми фазами φ1 и φ2,

Если начальные фазы φ1и φ2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение
принимает вид

т. е. точка движется по эллипсу.

• Дифференциальное уравнение гармонических колебаний ма­териальной точки

 , или ,
где m — масса точки; k — коэффициент квазиупругой силы (k=тω2).

• Полная энергия материальной точки, совершающей гармони­ческие колебания,

• Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m — масса тела; k — жесткость пружины.    Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l — длина маятника; g — ускорение свободного падения. Период колебаний физического маятника

где J — момент инерции колеблющегося тела относительно оси

колебаний; а — расстояние центра масс маятника от оси колебаний;

 — приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не более ошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где J — момент инерции тела относительно оси, совпадающей с упругой нитью; k — жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

• Дифференциальное уравнение затухающих колебаний
 , или ,

где r — коэффициент сопротивления; δкоэффициент затухания:  ; ω0— собственная угловая частота колебаний *

• Уравнение затухающих колебаний

где A (t) — амплитуда затухающих колебаний в момент t; ω — их угловая частота.

• Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

I

где А0амплитуда колебаний в момент t=0.

• Логарифмический декремент колебаний

где A (t) и A (t+T) — амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

• Дифференциальное уравнение вынужденных колебаний

, или

 ,

где — внешняя периодическая сила, действующая на
колеблющуюся материальную точку и вызывающая вынужденные
колебания; F0ее амплитудное значение;

• Амплитуда вынужденных колебаний

• Резонансная частота и резонансная амплитуда  и


Дата добавления: 2018-05-12; просмотров: 318; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!