Полиморфные (аллотропические) превращения при нагреве и охлаждении.



Атомно-кристаллическое строение металлов. Типы кристаллических решеток.

Все металлы в твердом состоянии имеют кристаллическое строение, те атомы расположены упорядоченно и образуют кристаллическую решетку. Различают 3 типа решеток:

1) простая кубическая (куб).

2) объемно – центрированная кубическая (оцк)

3) Кубическая гранецентрированная (гцк) (свинец, никель, золото, марганец). Куб, в котором атомы расп. по углам + по серединам граней.

Чем больше плотность упаковки, тем выше пластичность.

Строение реальных кристаллов и дефекты кристаллической решетки.

Локальные несовершенства (дефекты) в строении кристаллов присущи всем металлам. Эти нарушения идеальной структуры твердых тел оказывают существенное влияние на их физические, химические, технологические и эксплуатационные свойства. Без использования представлений о дефектах реальных кристаллов невозможно изучить явления пластической деформации, упрочнение и разрушение сплавов и др.
Дефекты кристаллического строения удобно классифицировать по их геометрической форме и размерам:
1) точечные (нульмерные) малы во всех трех измерениях, их размеры не больше нескольких атомных диаметров - это вакансии, межузельные атомы, примесные атомы;
2) линейные (одномерные) малы в двух направлениях, а в третьем направлении они соизмеримы с длиной кристалла - это дислокации, цепочки вакансий и межузельных атомов;
3) поверхностные (двумерные) малы только в одном направлении и имеют плоскую форму - это границы зерен, блоков и двойников, границы доменов;
4) объемные (трехмерные) имеют во всех трех измерениях относительно большие размеры - это поры, трещины;
Точечные дефекты - это вакансии, т. е. узлы решетки, в которых атомы отсутствуют в результате их перехода на поверхность кристалла (рис. 1, а), или атомы, внедрившиеся в межузлие (рис.1, б) решетки.



Рис. 1 - Дефекты кристаллической решетки:
а - вакансия; б - дислоцированный(внедрившийся) атом;


Вышедший из равновесного положения атом называют дислоцированным, а оставшееся пустое место в узле решетки - вакансией.
Вакансии и дислоцированные атомы вызывают искажение решетки, распространяющееся примерно на пять параметров.
Дислоцированный атом и вакансии непрерывно перемещаются по решетке вследствие неравномерного распределения энергии между атомами. Количество такого рода дефектов очень велико, например, в 1 см³ кадмия при температуре 300 °С наблюдается 10¹³ вакансий, а время существования вакансии всего лишь 0,0004 с.
Перемещаясь беспорядочно по кристаллической решетке, вакансии встречаются и скапливаются, образуя другой вид дефектов решетки, который называется дислокация и относится уже к линейным дефектам. Наиболее распространены дислокации двух типов: линейные или краевые и винтовые или спиральные. Дислокации можно легко представить путем смещения одной части кристалла по отношению к другой, но не по всей плоскости, а только по ее части. При этом часть соседних атомов в плоскости смещается по отношению к своим соседям, а часть плоскости остается без нарушения взаимного расположения атомов.
В случае линейной дислокации (рис.2, а) сдвиг происходит по плоской поверхности, а в случае винтовой дислокации (рис. 2, б) сдвиг идет по винтовой поверхности. Величина единичного смещения плоскостей характеризуется вектором Бюргере b (вектор b на рис. 2), который отражает как абсолютную величину сдвига, так и его направление (правая и левая винтовая дислокация, положительная и отрицательная краевая дислокация).

 


Рис. 2 - Схема образования дислокаций в кристалле при приложении внешней силы P:
а - линейной(краевой); б - винтовой(спиральной);


Чистые металлы получить технически очень трудно и по этой причине в металле присутствуют примеси различного происхождения. В зависимости от природы примесей и условий попадания их в металл они могут быть растворены в металле или находиться в виде отдельных включений. На свойства металла наибольшее влияние оказывают чужеродные растворенные примеси, атомы которых могут располагаться в пустотах между атомами основного металла (атомы внедрения) или в узлах кристаллической решетки основного металла (атомы замещения). Если атомы примесей значительно меньше атомов основного металла, то они образуют растворы внедрения (рис. 3, а), а если больше - то образуют растворы замещения (рис. 3, б). В том и другом случаях решетка становится дефектной и искажения ее влияют на свойства металла.

 


Рис. 3 - Искажение кристаллической решетки примесными атомами:
а - внедрения; б - замещения;
Наличие дислокаций и несовершенство кристаллов, с одной стороны, оказывают ослабляющий эффект на металл, а при определенных условиях дефекты могут упрочнять металл. Упрочняющий эффект обусловлен взаимодействием дислокаций друг с другом и с различными несовершенствами кристаллического строения. Сущность процесса упрочнения состоит в торможении дислокаций, создании препятствий для их перемещения.
Взаимодействие дислокаций многообразно и сложно. Они могут взаимодействовать в одной или разных плоскостях, иметь одноименный или разноименный знак, но если искажение решетки в результате их взаимодействия увеличивается, то возрастает сопротивление деформации кристалла. Поверхностные дефекты наблюдаются прежде всего на границах зерен.
Граница зерен - это поверхность, по обе стороны от которой кристаллические решетки различаются пространственной ориентацией (рис. 4). Эта поверхность является двумерным дефектом, имеющим значительные размеры в двух измерениях, а в третьем - его размер соизмерим с атомным. Границы зерен - это области высокой дислокационной плотности и несогласованности строения граничащих кристаллов. Атомы на границе зерен имеют повышенную энергию по сравнению с атомами внутри зерен и, как следствие этого, более склонны вступать в различные взаимодействия и реакции. На границах зерен отсутствует упорядоченное расположение атомов.



Рис. 4 - Схема взаимного расположения зерен металла:
а - граница между взаимно наклоненными зернами;б - граница между взаимно смещенными(скрученными) зернами;


Каждое из зерен металла состоит из отдельных фрагментов, а последние - из блоков, образующих мозаичную структуру. Зерна металла взаимно разориентированы на несколько градусов, фрагменты разориентированы на минуты, а блоки, составляющие фрагмент, взаимно разориентированы всего лишь на несколько секунд (рис. 5). На границах зерен в процессе кристаллизации металла скапливаются различные примеси, образуются дефекты, неметаллические включения, оксидные пленки. В результате металлическая связь между зернами нарушается и прочность металла снижается.



Рис. 5 -Схема кристалла(зерна) металла с его границами(ширина границ 5-10 межатомных расстояний):
а - общий вид; б - блочная(мозаичная) структура внутри зерна;
Состояние границ зерен металла оказывает большое влияние на их свойства.

Анизотропия металлов.

Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим располохением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны

В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией

Анизотропия – это различие свойств в разных направлениях в кристалле. В монокристалле – анизотропия. Поликристаллические вещества – где много кристаллов. В поликристаллическом теле – изотропия (одинаковые свойства по разным направлениям).

Полиморфные (аллотропические) превращения при нагреве и охлаждении.

Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах или, как их называют, в разных полиморфных модификациях. В результате полиморфного превращения атомы кристаллического тела, имеющие решетку одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа.

Кривая охлаждения металла, имеющего две полиморфные формы Рис. 28. Кривая охлаждения металла, имеющего две полиморфные формы - Р - с решеткой ГЦК (К 12) и а - с решеткой ГПУ (Г12): а - кривая охлаждения; б - схема превращения структуры 3-модификации в а-модификацию; 1 - бета-модификация; 2 - образование зародышей a-модификации в кристаллах 3-модификации; 3 - а-модификация.

Полиморфное превращение протекает вследствие того, что образование новой модификации сопровождается уменьшением энергии Гиббса. В условиях равновесия полиморфное превращение протекает при постоянной температуре (критическая точка) и сопровождается выделением теплоты, если превращение идет при охлаждении, или поглощением теплоты в случае нагрева (рис. 28, а).

Как и при кристаллизации из жидкой фазы, чтобы полиморфное превращение протекало, нужно некоторое переохлаждение (или перенагрев) относительно равновесной температуры для возникновения разности энергий Гиббса между исходной и образующейся новой модификациями. В твердом металле в отличие от жидкого возможно достижение очень больших степеней переохлаждения. Полиморфное превращение по своему механизму - кристаллизационный процесс, осуществляемый путем образования зародышей и последующего их роста (рис. 28, б).

Рост кристаллов.

При полиморфном превращении кристаллы (зерна) новой полиморфной формы растут в результате неупорядоченных, взаимно связанных переходов атомов через границу фаз. Отрываясь от решетки исходной фазы, атомы по одиночке или группами присоединяются к решетке новой фазы (а), и, как следствие этого, граница зерна a-модификации передвигается в сторону зерна модификации, «поедая» исходную фазу. Зародыши новой модификации наиболее часто возникают на границах зерен исходных кристаллитов. Вновь образующиеся кристаллы закономерно ориентированы по отношению к кристаллам исходной модификации.

В результате полиморфного превращения образуются новые кристаллические зерна, имеющие другой размер и форму, поэтому такое превращение также называют перекристаллизацией. Полиморфное превращение сопровождается скачкообразным изменением всех свойств металлов или сплавов: удельного объема, теплоемкости, теплопроводности, электрической проводимости, магнитных свойств, механических и химических свойств и т. д.

5. Классификация металлов, основные свойства металлов и сплавов.При нагреве или охлаждении металла переход из одного состояния в другое происходит с возникновением или разрушением кристаллической решётки и сопровождается тепловым эффектом. Вследствие этого металлы переходят из одного состояния в другое при постоянных температурах, и на кривых охлаждения или нагрева наблюдаются температурные остановки (см. рис.1).

Тпл – температура плавления металла;

Ткр – температура кристаллизации металла.

Участки 1-2 и 4-5 – переход металла из одного состояния в другое.

В т.1 происходит разрушение кристаллической решётки. На участке 1-2 вся тепловая энергия идёт на её разрушение. Металл переходит из твёрдого состояния в жидкое – процесс плавления. При этом увеличивается объём металла на 2…6% за счёт увеличения расстояния между атомами, силы взаимодействия при этом между атомами гораздо меньше, чем в твёрдом металл.

Рисунок 1

Для жидкости характерен ближний порядок, когда упорядоченное расположение атомов распространяется на небольшое расстояние. Этот порядок неустойчив. При температурах, близких к температуре плавления, в жидком металле наблюдаются области, в которых расположение атомов, близко к расположению атомов в твёрдом кристаллическом теле. Эти области называются фазовыми флуктуациями. Наиболее крупные флуктуации при определённых условиях могут стать зародышами кристаллов (центрами кристаллизации). Чтобы начался процесс кристаллизации необходимо переохладить металл ниже температуры плавления.

∆Т= Тпл -Ткр – тепловой гистерезис (несовпадение температуры плавления и температуры кристаллизации). Величина переохлаждения определяется природой металла, наличием примесей в металле, скоростью охлаждения (рис. 2). Если примесей мало, то металл надо значительно охладить.

Рисунок 2

 

Переход металла из жидкого состояния в твёрдое (процесс кристаллизации) связан с возникновением кристаллической решётки. Этот процесс происходит при постоянной температуре, что обусловлено выделением скрытой теплоты кристаллизации (участок 4-5 на рис. 1).

1.5.1 Энергетические условия процесса кристаллизации

В природе все процессы идут в сторону уменьшения энергии системы. Состояние системы определяется особой функцией – свободной энергией.

F = U – TS,где

F – свободная энергия системы;

U – внутренняя энергия системы;

Т – температура;

S – энтропия.

С увеличением температуры свободная энергия жидкого Fж и твёрдого Fтв тела уменьшается (рис. 3).

Рисунок 3

При Т0 Fтв = Fж – энергетически равноценны твёрдое и жидкое состояние вещества. Поэтому процессы плавления и кристаллизации происходить не будут (динамическое равновесие).

При Т1 Fтв1 < Fж1 – энергетически выгодно твердое состояние.

При Т2 Fж2 < Fтв2 – энергетически выгодно жидкое состояние.

Для начала кристаллизации вещество необходимо охладить ниже Т0, а для плавления нагреть выше Т0.

∆ Тпереохлажд.=Т0-Т1 – степень переохлаждения,

∆ Тперегрева.=Т2-Т0 – степень перегрева.


Дата добавления: 2018-05-12; просмотров: 1306; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!