Выпрямители. Блок-схема. Назначение элементов. Классификация выпрямителей.
Выпрямителем называется электротехническое устройство для преобразования электрической энергии переменного тока в электрическую энергию постоянного тока.
Необходимость такого преобразования обусловлена тем, что промышленные электростанции вырабатывают электрическую энергию в виде энергии трёхфазного тока, а многие производственные и бытовые электроустановки работают на постоянном токе.
В зависимости от мощности выпрямители подразделяются на однофазные и трехфазные. Однофазные выпрямители изготовляются обычно на небольшую мощность ( до 1 – 2 кВА), а выпрямители средней и большой мощности выполняют, как правило, трехфазными.
Структурная схема выпрямителя в общем случае, содержит следующие основные блоки (рис. 17):
5. 1. Трансформатор Тр;
6. 2. Выпрямительный блок БВ;
7. 3. Сглаживающий фильтр - фильтр нижних частот СФ;
8. 4. Стабилизатор выпрямленного напряжения Ст.
Вход выпрямителя подключается к однофазной или трёхфазной питающей сети на напряжение U ВХ , а к выходу выпрямителя на выходное напряжение U ВЫХ подключается нагрузка R Н .
Рис. 17. Структурная схема выпрямителя
Трансформатор(часто называемый силовым) предназначен для изменения питающего напряжения сети и получения заданной величины выходного напряжения на нагрузке, а также для электрической развязки блоков выпрямителя и его нагрузки от электрической линии с целью повышения электробезопасности работы с выпрямителем. Трансформатор позволяет также преобразовать одну систему фаз входных напряжений в другую, например трехфазную в шестифазную.
|
|
Выпрямительный блок служит для преобразования переменного напряжения в выпрямленное (пульсирующее) и выполняется на базе полупроводниковых приборов дискретного (ключевого) действия (вентильных элементов), обладающих односторонней электропроводностью (диоды, тиристоры и др.).
Качество работы вентильных элементов, входящих в выпрямительныйблок, оценивается коэффициентом выпрямления как отношение прямого тока к обратному току при одном и том же напряжении называется:
К В = I ПР / I ОБР , (U = const ).
Идеальныевентильные элементы пропускают ток только в одном направлении (прямой ток) и совсем не пропускают тока в обратном направлении I ОБР = 0 , т. е.обладают высокими выпрямительными свойствами. Реальныевентильные элементы, в отличие от идеальных, пропускают сравнительно небольшой обратный ток I ОБР ≈ 0 и отличаются более низкими выпрямительными свойствами. Поэтому для обеспечения качественной работы выпрямителя вентильные элементы должны обладать малым прямым и большим обратным сопротивлениями, а также высоким допустимым обратным напряжением, высоким КПД и стабильностью характеристик.
|
|
Сглаживающий фильтр служит для снижения пульсаций (сглаживания) выпрямленного напряжения, получаемого на выходе выпрямительного блока. Фильтр является устройством, содержащимR – , L – иС -элементы, благодаря которым фильтр способен запасать энергию при увеличении напряжения и отдавать ее при уменьшении напряжения. Качество работы фильтра оценивается коэффициентом фильтрации (сглаживания) - отношением коэффициентов пульсации на входе и выходе фильтра q = К П ВХ / К П ВЫХ .
Стабилизаторслужит для снижения влияния изменяющихся внешних условий (колебания напряжения в питающей сети, изменение нагрузки, температуры и т. д.) на режим работы выпрямителя с целью поддержания выходного напряжения на заданном уровне. Стабилизатор может быть установлен как на выходе выпрямителя, так и на входе - со стороны переменного тока.
В состав выпрямителя могут также входить выключатели, элементы автоматики и защиты от перегрузок. В зависимости от конкретных требований отдельные блоки в выпрямителе могут отсутствовать (кроме выпрямительного блока). Если, например, не требуется изменять входное напряжение UВХ и в целях безопасности электрически разделять нагрузку от питающей сети, то из схемы исключается трансформатор, а в некоторых случаях можно исключить сглаживающий фильтр или стабилизатор.
|
|
Кроме того, сам выпрямительный блок может быть очень простым или достаточно сложным. В простых схемах содержится минимальное количество вентильных элементов, в результате чего получают низкое качество выпрямления со сравнительно высоким коэффициентом пульсаций. Сложные схемы строятся на основе смешанного соединения вентильных элементов, благодаря чему удается понизить коэффициент пульсации и улучшить характеристики выпрямителя.
Основными техническими параметрами выпрямителя являются значение входного (переменного) напряжения U ВХ и тока I , среднее значение выпрямленного напряжения (средневыпрямленное напряжение) U С В и ток I С В , коэффициент пульсаций КП ,коэффициент сглаживания пульсаций q ,КПД и др.
По способам преобразования переменного тока различают одно- и двухполупериодные выпрямители.
Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления (то есть однонаправленный ток), в частном случае - в постоянный выходной электрический ток.
|
|
Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, для сглаживания пульсаций применяют фильтры.
Устройство, выполняющее обратную функцию — преобразование постоянного тока в переменный ток называется инвертором.
Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).
Выпрямители классифицируют по следующим признакам:
по виду переключателя выпрямляемого тока
механические синхронные с щёточноколлекторным коммутатором тока;
механические синхронные с контактным переключателем (выпрямителем) тока;
с электронной управляемой коммутацией тока (например, тиристорные);
электронные синхронные (например, транзисторные) — как разновидность выпрямителей с управляемой коммутацией;
с электронной пассивной коммутацией тока (например, диодные);
по мощности
силовые выпрямители;
выпрямители сигналов;
по степени использования полупериодов переменного напряжения
однополупериодные — пропускают в нагрузку только одну полуволну;
двухполупериодные — пропускают в нагрузку обе полуволны;
неполноволновые — не полностью используют синусоидальные полуволны;
полноволновые — полностью используют синусоидальные полуволны;
по схеме выпрямления — мостовые, с умножением напряжения, трансформаторные, с гальванической развязкой, бестрансформаторные и пр.;
по количеству используемых фаз — однофазные, двухфазные, трёхфазные и многофазные;
по типу электронного вентиля — полупроводниковые диодные, полупроводниковые тиристорные, ламповые диодные (кенотронные), газотронные, игнитронные, электрохимические и пр.;
по управляемости — неуправляемые (диодные), управляемые (тиристорные);
по количеству каналов — одноканальные, многоканальные;
по величине выпрямленного напряжения — низковольтные (до 100 В), средневольтовые (от 100 до 1000 В), высоковольтные (свыше 1000 В);
по назначению — сварочный, для питания микроэлектронной схемы, для питания ламповых анодных цепей, для гальваники и пр.;
по степени полноты мостов — полномостовые, полумостовые, четвертьмостовые;
по наличию устройств стабилизации — стабилизированные, нестабилизированные;
по управлению выходными параметрами — регулируемые, нерегулируемые;
по индикации выходных параметров — без индикации, с индикацией (аналоговой, цифровой);
по способу соединения — параллельные, последовательные, параллельно-последовательные;
по способу объединения — раздельные, объединённые звёздами, объединённые кольцами;
по частоте выпрямляемого тока — низкочастотные, среднечастотные, высокочастотные.
Дата добавления: 2018-05-12; просмотров: 5907; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!