Перестановки. Размещения. Сочетания

Nbsp;  

АХМЕТОВА Наиля Абдулхамитовна

УСМАНОВА Зинира Масгутовна

 

 

Дискретная математика

Функции алгебры логики

Учебное пособие

 

Редактор Г.Р. Орлова

ЛР №020258 от 08.01.98

Подписано в печать 10.02.2000г. Формат 80х64 1/16

Бумага писчая. Печать плоская. Гарнитура «Таймс».

Усл. печ. 7,9. Усл. кр.-отт. 7,9. Уч.-изд.л. 7,8.

Тираж 100 экз. Заказ № . С(3).

Уфимский государственный авиационный технический университет

Редакционно – издательский комплекс УГАТУ

450000, Уфа-центр, ул. К. Маркса, 12

 

 

Содержание

Введение ………………………………………………………...............3

1. Элементы комбинаторики ……………………………………...... 6

1.1.    Перестановки. Размещения. Сочетания ………………………… 6

1.2.    Задачи по комбинаторике …………………………………………12

Функции алгебры логики ................................................................... 26 

2.1. Элементарные функции алгебры логики ………………………… 26

2.2. Формульное задание функций алгебры логики …………………31

2.3. Принцип двойственности ………………………………………… 35

2.4. Разложение булевой функции по переменным …………………. 40

2.5. Полнота, примеры полных систем ………………………………. 43

2.6. Замыкание и замкнутые классы ………………………………….. 48

2.7. Функции k – значной логики ……………………………………55

2.8. Задачи и упражнения по функциям алгебры логики....................... 58

3. Минимизация булевых функций .......................................................... 80

3.1. Минимизация нормальных форм …………………………………80

3.2.    Минимизация частично определенных функций ………………… 93

3.3.    Задачи по минимизации и доопределению булевых функций……102

4. Логика высказываний ……………………………………………… 106

4.1. Введение в логику высказываний ……………………………… 106

4.2. Задачи по алгебре высказываний ………………………………… 117

Список литературы .............................................................................. 126

 

 

ВВЕДЕНИЕ

 

Дискретная математика – часть математики, которая зародилась в глубокой древности. В широком смысле этого слова к дискретной математике относятся как классические разделы математики: алгебра, теория чисел, теория множеств, математическая логика и т.д., так и новые разделы, которые возникли в середине нашего столетия в связи с внедрением ЭВМ в практическую жизнь. В узком смысле, а в настоящее время именно в узком смысле слова «дискретная математика» и употребляются, сюда относят только те разделы, которые связаны с анализом сложных управляющих систем.

Курс дискретной математики, входящий в программу для ряда специальностей УГАТУ, включает в себя функции алгебры двузначной и к-значной логики, автоматные функции, теорию графов, теорию кодирования, синтез схем из функциональных элементов, элементы комбинаторики и алгебру высказываний.

В этом пособии будут рассмотрены элементы комбинаторики, функции двузначной и к-значной логики и логика высказываний.

 При этом будет использован формализм, который оказался особо подходящим для строгого описания многих разделов компьютерной математики – булева алгебра. Булева алгебра содержит в себе основные положения элементарной логики. Примерами булевой алгебры являются алгебра множеств и алгебра высказываний. Название связано с именем английского математика Джорджа Буля (1815 – 1864). Полное формальное представление булевой алгебры было дано лишь в 1904 году Хантингтоном. Он ввел систему аксиом, из которых могут быть выведены  все утверждения булевой алгебры. Предпошлем основному изложению определение булевой алгебры.

Алгеброй Буля называется произвольное множество элементов {a, b, ...}, для которых определены две бинарные операции, условно называемые «сложение» и «умножение», которые каждым двум элементам a и b  ставят в соответствие третий, и одна унарная операция, условно называемая «черта», которая каждому элементу ставит в соответствие другой. В этом множестве имеются два особых элемента, назовем их 0 и e, и выполняются cледующие правила:

1) коммутативность сложения и умножения;

2) ассоциативность сложения и умножения;

3) дистрибутивность умножения относительно сложения и наоборот;

4) идемпотентность: a+a=a  и a a=a ;

5) инволюция =a;

6) правила де Моргана: , ;

7) =e и =0;

8) a+0=a , a+e=e , a 0=0 , a e=a.

Определение булевой алгебры, кажущееся с первого взгляда громоздким и весьма специальным, на самом деле явилось результатом глубокого проникновения в существо многих внешне не схожих явлений и прoцессов, абстрактное описание которых позволило обнаружить далеко идущие аналогии.

Например, алгебру Буля образует множество подмножеств любого множества (универсума), где в качестве бинарных операцией взяты пересечение(Ç) и объединение ( È)  множеств, в роли особого элемента 0 служит пустое множество Æ, а в роли e  -  сам универсум, в роли операции отрицания – дополнение.

Пособие состоит из четырех разделов. В первом разделе излагаются элементы комбинаторики, причем в таком объеме, который позволяет обеспечить приемлемую строгость изложения в последующих разделах, например, при оценке мощностей замкнутых классов.

Во втором разделе рассматриваются основные положения алгебры логики. Здесь особую роль играет множество {0,1}, элементы которого не являются числами в обычном смысле, хотя по некоторым свойствам и похожи на них. Наиболее распространенная интерпретация двоичных переменных – логическая: «да» – «нет», «истинно» (и) – «ложно» (л). В контексте, содержащем одновременно двоичные и арифметические величины и функции, эта интерпретация обычно фиксируется явно, например, в языках программирования. В данном пособии логическая интерпретация двоичных переменных необходима только в разделе, посвящённом логике высказываний.

Третий раздел содержит методы минимизации булевых функций. Знание этих методов полезно при изучении, например, таких разделов дискретной математики, как «схемы из функциональных элементов» – для понижения сложности схем, и «автоматные функции» – для доопределения частично определённых функций.

В четвёртом разделе приведены элементы логики высказываний – булевой алгебры на множестве {истина, ложь}.

Каждый раздел пособия содержит теоретический материал, сопровождаемый большим числом примеров, и завершается задачами для самостоятельного решения. Причём количество задач таково, что пособие может быть использовано преподавателями на практических занятиях.

Работа выполнена на кафедре математики УГАТУ. Учебное пособие написано по материалам лекций и практических занятий по курсу дискретной математики, которые проводили авторы.

 

 

 

 

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ

 

Перестановки. Размещения. Сочетания

 

Пусть есть некоторое конечное множество элементов U={a1, a2, ..., an}. Рассмотрим набор элементов , где ÎU, j = 1, 2, ..., r.

Этот набор называется выборкой объема r из n элементов. Любое подмножество U является выборкой, но не всякая выборка является подмножеством U, так как в выборку один и тот же элемент может входить несколько раз (в отличие от подмножества).

Комбинаторные задачи связаны с подсчетом числа выборок объема r из n элементов, где выборки подчиняются определенным условиям, т.е. выбор производится по какому-нибудь принципу. Подсчет числа выборок основывается на двух правилах теории множеств.

Принцип суммы: если card A = m, card B = n и AÇB = Æ , то card A È B = =m+n. На комбинаторном языке это означает: если объект A можно выбрать m способами, объект B другими n способами и их одновременный выбор невозможен, то выбор “A или B” может быть осуществлен m+n способами.

Принцип произведения: если card A=m, card B=n, то card (A´B)=m+n. На комбинаторном языке это означает: если объект A может быть выбран m способами, при любом выборе A объект B может быть выбран n способами, то выбор “A и B” может быть осуществлен m×n способами.

Пример 1. A = 10 {различных шоколадок}, B = 5 { различных пачек печенья}. Выбор “A или B” означает, что выбирается что-то одно и способов выбора в этом случае будет 15. Выбор “A и B” означает, что выбирается 1 шоколадка и 1 пачка печенья и различных вариантов для такого выбора будет 50.

Пример 2. Бросают 2 игральные кости. Сколькими способами они могут выпасть так, что на каждой кости выпадет четное число очков либо на каждой кости выпадет нечетное число очков?

Пусть m – число возможностей для выпадения четного числа на одной кости, n – число возможностей для выпадения нечетного числа. Здесь m = n = 3. По правилу произведения количество выпадения четных чисел, как и нечетных, равно 9. По правилу суммы количество возможностей для выпадения двух четных и двух нечетных чисел будет 18.

Рассмотрим основные способы формирования выборок.

Определение. Выборка называется упорядоченной, если в ней задан порядок следования элементов. Если порядок следования элементов несущественен, то выборка называется неупорядоченной.

Из определения следует, что две упорядоченные выборки, состоящие из одних и тех же элементов, но расположенных в разном порядке, являются различными.

Перестановки. Упорядоченные выборки, объемом n из n элементов, где все элементы различны, называются перестановками из n элементов. Число перестановок из n элементов обозначается Pn.

Теорема. P = n!

Доказательство проводится по индукции. Очевидно, если n = 1, то перестановка только одна и P1 = 1!. Пусть для n = k теорема верна и Pk = k!, покажем, что она тогда верна и для n = k+1. Рассмотрим (k+1)- й элемент, будем считать его объектом A, который можно выбрать k+1 способами. Тогда объект B – упорядоченная выборка из оставшихся k элементов по k. B соответствии с индуктивным предположением объект B можно выбрать k! способами. По принципу произведения выбор A и B можно осуществить k!(k+1) = (k+1)! способами. Совместный выбор A и B есть упорядоченная выборка из k + 1 элементов по k + 1.

Пример 3. Сколько существует способов, чтобы расположить на полке 10 различных книг? Ответ: 10!

Можно рассуждать иначе. Выбираем первый элемент, это можно сделать n способами. Затем выбираем второй элемент, это можно сделать (n - 1) способами. По правилу произведения упорядоченный выбор двух элементов можно осуществить n´(n - 1) способами. Затем выбираем третий элемент, для его выбора останется n - 2 возможности, последний элемент можно выбрать единственным способом. Мы вновь приходим к формуле: n(n - 1)(n - r) ... 1.

Размещения. Упорядоченные выборки объемом m из n элементов (m < n), где все элементы различны, называются размещениями. Число размещений из n элементов по m обозначается .

Теорема.  =

Обозначим x = . Тогда оставшиеся (nm) элементов можно упорядочить (nm)! способами. По принципу произведения, если объект A можно выбрать x способами, объект B (nm)! способами, то совместный выбор “A и B” можно осуществить x ×(nm)! способами, а выбор “A и B” есть перестановки и Pn = n! Отсюда x =  =

Рассуждая иначе: первый элемент выбираем n способами, второй – (n – 1) способами и т.д. , m–й элемент выбираем (nm + 1) способом. По принципу произведения вновь имеем: n(n – 1)...(nm +1), что совпадает с .

Пример 4. Группа из 15 человек выиграла 3 различных книги. Сколькими способами можно распределить эти книги среди группы?

Имеем  = 15 ×14 ×13 = 2730.

Сочетания. Неупорядоченные выборки объемом m из n элементов (m < n) называются сочетаниями. Их число обозначается .

Теорема.

Доказательство. Очевидно, Действительно, объект A – неупорядоченная выборка из n элементов по m, их число . После того, как эти m элементов отобраны, их можно упорядочить m! способами (в роли объекта B выступает “порядок“ в выборке). Совместный выбор “A и B“ – упорядоченная выборка.

Пример 5. Группа из 15 человек выиграла 3 одинаковых книги. Сколькими способами можно распределить эти книги?

 

Сочетания, размещения и перестановки являлись подмножествами исходного множества. Рассмотрим выборки, которые не являются подмножествами.

Размещения с повторениями. Упорядоченные выборки объемом m из n элементов, где элементы могут повторяться, называются размещениями с повторениями. Их число обозначается (n).

Теорема. (n) = nm.

Доказательство. Первый элемент может быть выбран n способами, второй элемент также может быть выбран n способами и так далее, m -й элемент также может быть выбран n способами. По принципу произведения получаем nm .

Пример 6. Кодовый замок состоит из четырех разрядов, в каждом разряде независимо от других могут быть выбраны цифры от 0 до 9. Сколько возможных комбинаций?

Здесь n = 10, m = 4 и ответом будет 104.

Пример 7. Рассмотрим вектор длины m, каждая координата которого может принимать всего 2 значения: 0 или 1. Сколько будет таких векторов?

Это есть выборка, объемом m из двух элементов.Ответ:2m

Перестановки с повторениями. Пусть имеется n элементов, среди которых k1 элементов первого типа, k2 элементов второго типа и т.д., ks элементов s-го типа, причем k1 + k2 + ... + ks = n. Упорядоченные выборки из таких n элементов по n называются перестановками с повторениями, их число обозначается Cn(k1, k2, ..., ks). Числа Cn(k1, k2, ..., ks) называются полиномиальными коэффициентами.

Теорема. Cn(k1, ..., ks)=

Доказательство проведем по индукции по s, т. е. по числу типов элементов. При s = 1 утверждение становится тривиальным: k1 = n, все элементы одного типа и Cn(n) = 1. В качестве базы индукции возьмем s = 2, n = k1 + k2. В этом случаем перестановки с повторениями превращаются в сочетания из n элементов по k1 (или k2): выбираем k1 место, куда помещаем элементы первого типа.

Cn(k1,k2) =

Пусть формула верна для s = m , т.е. n = k1 + ... + km и

Cn(k1, ..., km)=

Докажем, что она верна для s = m + 1 (n = k1 +... + km + km+1). В этом случае перестановку с повторениями можно рассматривать как совместный выбор двух объектов: объект A – выбор k m + 1 места для элементов (m + 1)-го типа; объект B – перестановка с повторениями из (nkm+1) элементов. Объект A можно выбрать  способом, B (k1, ..., km) способами. По принципу произведения

и мы получили требуемую формулу.

Замечание. Числа  называются биноминальными коэффициентами. Из этой формулы следует, что

Пример 8. Сколько различных слов можно получить, переставляя буквы в слове “математика”?

Решение. Буква “а” входит 3 раза (k 1= 3), буква “м” – 2 раза (k2 = 2), “т” – 2 раза (k3 = 2), буквы “е”, ”к”, ”и” входят по одному разу, отсюда k3 = k4 = k5 = 1.

C10 (3, 2, , 2, 1, 1, 1) =  =151200.

Сочетания с повторениями. Пусть имеется n типов элементов, каждый тип содержит не менее m одинаковых элементов. Неупорядоченная выборка объемом m из имеющихся элементов (их число ³ m´n ) называется сочетанием с повторением. Число сочетаний с повторениями обозначается (n).

Теорема. (n) = .

Доказательство. Пусть в выборку вошло m1 элементов первого типа, m2 элементов второго типа, ...mnn-го типа. Причем каждое 0 £ m i£ m и m1+m2+ ...+ mn= =m. Сопоставим этой выборке вектор следующего вида:  Очевидно, между множеством неупорядоченных выборок с повторениями и множеством векторов {bn} существует биекция (докажите это!). Следовательно, (n) равно числу векторов bn. “ Длина вектора” bn равна числу 0 и 1, или m+ +n–1. Число векторов равно числу способов, которыми m единиц можно поставить на m + n - 1 мест, а это будет .

Пример 9. В кондитерской имеется 7 видов пирожных. Покупатель берет 4 пирожных. Сколькими способами он может это сделать ? (Предполагается, что пирожных каждого вида ³ 4).

Число способов будет

Пример10. Пусть V = {a, b, c}. Объем выборки m = 2. Перечислить перестановки, размещения, сочетания, размещения с повторениями, сочетания с повторениями.

1. Перестановки: {abc, bac, bca, acb, cab, cba}. P3=3!=6.

2. Размещения: {(ab), (bc), (ac), (ba), (cb), (ca)}.

3. Сочетания: {(ab), (ac), (bc)}.

4. Размещения с повторениями: {(ab), (bc), (ac), (ba), (cb), (ca), (aa), (bb), (cc)}. (3)= 32 = 9.

5. Сочетания с повторениями: {(ab), (bc), (ca), (aa), (bb), (cc)}.

Задачи по комбинаторике

 

1.Расписание одного дня содержит 5 уроков. Определить количество таких расписаний при выборе из одиннадцати дисциплин.

Ответ: 55 440.

2.Комиссия состоит из председателя, его заместителя и еще пяти человек. Сколькими способами члены комиссии могут распределять между собой обязанности?

Ответ: 42.

3.Сколькими способами можно выбрать трех дежурных из группы в 20 человек?

Ответ: 1 140.

4.Сколько различных звукосочетаний можно взять на десяти выбранных клавишах рояля, если каждое звукосочетание может содержать от трех до десяти звуков?

Ответ: 968.

5.В вазе стоят 10 красных и 5 розовых гвоздик. Сколькими способами можно выбрать из вазы пять гвоздик одного цвета?

Ответ: 253.

6.Номера трамвайных маршрутов иногда обозначаются двумя цветными фонарями. Какое количество различных маршрутов можно обозначить, если использовать фонари восьми цветов?

Ответ: 64.

7.Чемпионат, в котором участвуют 16 команд, проводится в два круга (т.е. каждая команда дважды встречается с любой другой). Определить, какое количество встреч следует провести.

Ответ: 240.

8.Замок открывается только в том случае, если набран определенный трехзначный номер. Попытка состоит в том, что набирают наугад три цифры из заданных пяти цифр. Угадать номер удалось только на последней из всех возможных попыток. Сколько попыток предшествовало удачной?

Ответ: 124.

9.Из группы в 15 человек выбирают четырех участников эстафеты 800+400+200+100. Сколькими способами можно расставить спортсменов по этапам эстафеты?

Ответ: 32 760.

10.Команда из пяти человек выступает на соревнованиях по плаванию, в которых участвуют еще 20 спортсменов. Сколькими способами могут распределиться места, занятые членами этой команды?

Ответ: 25!/20!.

11.Сколькими способами можно расположить на шахматной доске две ладьи так, чтобы одна не могла взять другую? (Одна ладья может взять другую, если она находиться с ней на одной горизонтали или на одной вертикали шахматной доски.)

Ответ: 3 126.

12.Две ладьи различного цвета расположены на шахматной доске так, что каждая может взять другую. Сколько существует таких расположений?

Ответ: 896.

13.Порядок выступления восьми участников конкурса определяется жребием. Сколько различных исходов жеребьевки при этом возможно?

Ответ: 8!.

14.Тридцать человек разбиты на три группы по десять человек в каждой. Сколько может быть различных составов групп?

Ответ: 30!/(10!) .

15.Сколько четырехзначных чисел, делящихся на 5, можно составить из цифр 0, 1, 3, 5, 7, если каждое число не должно содержать одинаковых цифр?

Ответ: 42.

16.Сколько различных светящихся колец можно сделать, расположив по окружности 10 разноцветных лампочек (кольца считаются одинаковыми при одинаковом порядке следования цветов)?

Ответ: 9!.

17.На книжной полке помещается 30 томов. Сколькими способами их можно расставить, чтобы при этом первый и второй тома не стояли рядом?

Ответ:

18.Четыре стрелка должны поразить восемь мишеней (каждый по две). Сколькими способами они могут распределить мишени между собой?

Ответ: 2 520.

19.Из группы в 12 человек ежедневно в течение 6 дней выбирают двух дежурных. Определить количество различных списков дежурных, если каждый человек дежурит один раз.

Ответ: 12!/(2!) .

20.Сколько четырехзначных чисел, составленных из цифр 0, 1, 2, 3, 4, 5, содержат цифру 3 (цифры в числах не повторяются )?

Ответ: 204.

21.Десять групп занимаются в десяти расположенных подряд аудиториях. Сколько существует вариантов расписания, при которых группы №1 и №2 находились бы в соседних аудиториях?

Ответ: 2×9!.

22.В турнире участвуют 16 шахматистов. Определить количество различных расписаний первого тура (расписания считаются различными, если отличаются участниками хотя бы одной партии; цвет фигур и номер доски не учитываются).

Ответ : 2 027 025.

23.Шесть ящиков различных материалов доставляются на пять этажей стройки. Сколькими способами можно распределить материалы по этажам? В скольких вариантах на пятый этаж доставлен какой-либо один материал?

Ответ: 56; 6×45.

24.Два почтальона должны разнести 10 писем по 10 адресам. Сколькими способами они могут распределить работу?

Ответ: 210.

25.Поезд метро делает 16 остановок, на которых выходят все пассажиры. Сколькими способами могут распределиться между этими остановками 100 пассажиров, вошедших в поезд на конечной остановке?

Ответ: 16100.

26.Сколько трехзначных чисел, делящихся на 3, можно составить из цифр 0, 1, 2, 3, 4, 5, если каждое число не должно содержать одинаковых цифр?

Ответ: 40.

27.Собрание из 80 человек избирает председателя, секретаря и трех членов ревизионной комиссии. Сколькими способами это можно сделать?

Ответ: 80!(3! ×75!).

28.Из 10 теннисисток и 6 теннисистов составляют 4 смешанные пары. Сколькими способами это можно сделать?

Ответ: 10!/48.

29.Три автомашины №1,2,3 должны доставить товар в шесть магазинов. Сколькими способами можно использовать машины, если грузоподъемность каждой из них позволяет взять товар сразу для всех магазинов и если две машины в один и тот же магазин не направляются? Сколько вариантов маршрута возможно, если решено использовать только машину №1?

Ответ: 36×6!.

30.Четверо юношей и две девушки выбирают спортивную секцию. В секцию хоккея и бокса принимают только юношей, в секцию художественной гимнастики – только девушек, а в лыжную и конькобежную секции – и юношей, и девушек. Сколькими способами могут распределиться между секциями эти шесть человек?

Ответ: 2304.

31.Из лаборатории, в которой работает 20 человек, 5 сотрудников должны уехать в командировку. Сколько может быть различных составов этой группы, если начальник лаборатории, его заместитель и главный инженер одновременно уезжать не должны?

Ответ: 15 368.

32.В фортепьянном кружке занимаются 10 человек, в кружке художественного слова –15, в вокальном кружке – 12, в фотокружке – 20 человек. Сколькими способами можно составить бригаду из четырех чтецов, трех пианистов, пяти певцов и одного фотографа?

Ответ: 15!10/7!

33.Двадцать восемь костей домино распределены между четырьмя игроками. Сколько возможно различных распределений?

Ответ:

34.Из группы в 15 человек должны быть выделены бригадир и 4 члена бригады. Сколькими способами это можно сделать?

Ответ: 15 015.

35.Пять учеников следует распределить по трем параллельным классам. Сколькими способами это можно сделать?

Ответ: 35.

36.Лифт останавливается на 10 этажах. Сколькими способами могут распределиться между этими остановками 8 пассажиров, находящихся в лифте?

Ответ: 108.

37.Восемь авторов должны написать книгу из шестнадцати глав. Сколькими способами возможно распределение материала между авторами, если два человека напишут по три главы, четыре – по две, два – по одной главе книги?

Ответ: 16!/(26×32).

38.В шахматном турнире участвуют 8 шахматистов третьего разряда, 6 – второго и 2 перворазрядника. Определить количество таких составов первого тура, чтобы шахматисты одной категории встречались между собой (цвет фигур не учитывается).

Ответ: 420.

39.Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составляются всевозможные пятизначные числа: не содержащие одинаковых цифр. Определить количество чисел, в которых есть цифры 2, 4 и 5 одновременно.

Ответ: 1800.

40.Семь яблок и два апельсина надо положить в два пакета так, чтобы в каждом пакете был хотя бы один апельсин и чтобы количество фруктов в них было одинаковым. Сколькими способами это можно сделать?

Ответ: 105.

41.Буквы азбуки Морзе состоят из символов (точек и тире). Сколько букв можно изобразить, если потребовать, чтобы каждая буква содержала не более пяти символов?

Ответ: 62.

42.Номер автомобильного прицепа состоит из двух букв и четырех цифр. Сколько различных номеров можно составить, используя 30 букв и 10 цифр?

Ответ: 9×106.

43.Садовник должен в течение трех дней посадить 10 деревьев. Сколькими способами он может распределить по дням работу, если будет сажать не менее одного дерева в день?

Ответ: 36.

44.Из вазы, где стоят 10 красных и 4 розовых гвоздики, выбирают один красный и два розовых цветка. Сколькими способами это можно сделать?

Ответ: 60.

45.Двенадцати ученикам выданы два варианта контрольной работы. Сколькими способами можно посадить учеников в два ряда, чтобы у сидящих рядом не было одинаковых вариантов, а у сидящих друг за другом был один и тот же вариант?

Ответ: 2(6!)2.

46.Каждый из десяти радистов пункта А старается установить связь с каждым из двадцати радистов пункта Б. Сколько возможно различных вариантов такой связи?

Ответ: 2200.

47.Шесть ящиков различных материалов доставляют на восемь этажей стройки. Сколькими способами можно распределить материалы по этажам? В скольких вариантах на восьмой этаж будет доставлено не более двух материалов?

Ответ: 86; 86–13×75.

48.Сколькими способами можно построить в одну шеренгу игроков двух футбольных команд так, чтобы при этом два футболиста одной команды не стояли рядом?

Ответ: 2(11!)2.

49.На книжной полке книги по математике и по логике – всего 20 книг. Показать, что наибольшее количество вариантов комплекта, содержащего 5 книг по математике и 5 книг по логике, возможно в том случае, когда число книг на полке по каждому предмету равно 10.

Ответ: C510–x × C510+x   (C510)2 .

50.Лифт, в котором находятся 9 пассажиров, может останавливаться на десяти этажах. Пассажиры группами выходят по два, три и четыре человека. Сколькими способами это может произойти?

Ответ: 10!/4.

51.«Ранним утром на рыбалку улыбающийся Игорь мчался босиком». Сколько различных осмысленных предложений можно составить, используя часть слов этого предложения, но не изменяя порядка их следования?

Ответ: 23.

52.В шахматной встрече двух команд по 8 человек участники партий и цвет фигур каждого участника определяются жеребьевкой. Каково число различных исходов жеребьевки?

Ответ:

53.A и B и еще 8 человек стоят в очереди. Сколькими способами можно расположить людей в очереди, чтобы A и B были отделены друг от друга тремя лицами?

Ответ: 6 × 8! × 2!.

54.Сколько четырехзначных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, если а) цифры не повторяются; б) цифры могут повторяться; в) используются только нечетные цифры и могут повторяться; г) должны получиться только нечетные числа и цифры могут повторяться.

Ответ: а) 5 × 5 × 4 × 3=300; б) 5 × 6 = 1080; в) 34; г) 5 × 6 × 6 × 3 = 540.

55.В классе изучается 10 предметов. Сколькими способами можно составить расписание на понедельник, если в понедельник должно быть 6 уроков и все разные?

Ответ:

56.На одной прямой взято m точек, на параллельной ей прямой n точек. Сколько треугольников с вершинами в этих точках можно получить?

Ответ:

57. Сколько есть пятизначных чисел, которые читаются одинаково справа налево и слева направо, например, 67876.

Ответ: 9 × 10 × 10 = 900.

58.Сколько разных делителей (включая 1 и само число) имеет число

35 × 54?

Ответ: 30.

59.В прямоугольной матрице A = {aij} m строк и n столбцов. Каждое aijÎ{+1, –1}, причем произведение aij по любой строке или любому столбцу равно 1. Сколько таких матриц?

Ответ: 2(m–1)(n–1).

60.В комнате n лампочек. Сколько разных способов освещения комнаты,

при которых горит:

а) ровно k лампочек (k < n);

б) хотя бы одна лампочка.

Ответ: а) ; б) = 2n –1.

61.Сколько имеется четырехзначных чисел, у которых каждая следующая цифра больше предыдущей?

Ответ: = 126.

62.Сколько имеется четырехзначных чисел, у которых каждая следующая цифра меньше предыдущей?

Ответ:  = 210.

63.Имеется p белых и q черных шаров. Сколькими способами их можно выложить в ряд, чтобы никакие 2 черных шара не лежали рядом (q £ p + 1)?

Ответ: .

64.Имеется p разных книг в красных переплетах и q разных книг в синих переплетах (q £ p + 1). Сколькими способами их можно расставить в ряд, чтобы никакие две книги в синих переплетах не стояли рядом?

Ответ: .

65.Сколькими способами можно упорядочить {1, 2, ... n} чисел так, чтобы числа 1, 2, 3 стояли рядом в порядке возрастания?

Ответ: (n – 2)!.

66. На собрании должны выступить 4 докладчика: A, B, C и D, причем B не может выступить раньше A. Сколькими способами можно установить их очередность.

Ответ: 12 = 3! + 2× 2 +2.

67. Сколькими способами m + n + s предметов можно распределить на 3 группы, чтобы в одной группе было m предметов, в другой – n, в третьей – s предметов.

Ответ:

68. Сколько целых неотрицательных решений имеет уравнение x1 + x2 + ... + xm = n.

Ответ: .

69.Найти число векторов Z = (aa2 ... an), координаты которых удовлетворяют условиям:

1)       ai Î {0, 1};

2)       ai Î {0, 1, ... k – 1};

3)       ai Î {0, 1, ... ki – 1};

4)       ai Î {0, 1} и a1 + a2 + ... + an = r.

Ответ: 1) 2n ; 2) kn ; 3) kk2 ... kn ; 4) .

70.Каково число матриц {aij}, где aij Î{0,1} и в которой m строк и n столбцов? 1) строки могут повторяться; 2) строки попарно различны.

Ответ: 1) 2m×; 2) .

71.Дано m предметов одного сорта и n другого. Найти число выборок, составленных из r элементов одного сорта и s другого.

Ответ: .

72.Сколькими способами число n можно представить в виде суммы k натуральных слагаемых (представления, различающиеся лишь порядком слагаемых считаются разными).

Ответ: .

73.Бросаются 10 одинаковых игральных костей. Сколькими способами они могут упасть так, что :

1) ни на одной кости не выпадет 6 очков;

2) хотя бы на одной кости выпадет 6 очков;

3) ровно на 3-х костях выпадет 6 очков;

4) ровно на 3-х костях выпадет 6 очков, на 2-х других выпадет 5 очков.

Ответ : 510, 610-510, 24´58, 630´46

74.Считая, что телефонные номера состоят из 7 цифр, причем могут начинаться и с 0 тоже, найти число телефонных номеров, таких что:

1) 4 последние цифры одинаковы и не встречаются среди первых 3-х (первые 3 цифры различны.);

2) все цифры различны ;

3) номер начинается с цифры 5;

4) номер содержит три цифры 5, две цифры 1 и две цифры 2.

Ответ : 5040, , 106, 210.

75.10 человек, среди которых Иванов и Петров, размещаются в гостинице в двух 3-х местных и в одном 4-х местном номерах. Сколькими способами они могут быть размещены ? Сколькими способами их можно разместить, если Иванов и Петров помещены в 4-х местный номер ?

Ответ: 4200, 560. 

76. 52 карты раздаются 4-м игрокам, каждому по 13 карт. Сколькими способами их можно раздать, если

1) каждый игрок получит туза;

2) один из игроков получит все 13 карт единой масти ;

3) все тузы попадут к одному из игроков;

4) 2 определенных игрока не получат ни одного туза.

Ответ: , , , .

77. Регистр калькулятора содержит 8 разрядов. Сколько будет 8-ми значных чисел, если

1) регистр содержит ровно 2 одинаковые цифры ;

2) регистр содержит ровно 2 пары одинаковых цифр;

3) регистр содержит ровно 3 одинаковые цифры;

4) регистр содержит не более 3-х различных цифр.

Ответ: , , , .

78. Сколькими способами можно выстроить 9 человек:

1) в колонну по одному;

2) в колонну по 3, если в каждой шеренге люди выстраиваются по росту и нет людей одинакового роста? 

Ответ: 9!, .

79. Из n букв, среди которых a встречается α раз, буква b встречается β раз, а остальные буквы попарно различны, составляются слова. Сколько среди них будет различных r-буквенных слов, содержащих h раз букву a и k раз букву b?

Ответ: .

80. Имеется колода из 4n (n³5) карт, которая содержит карты 4-х мастей по n карт каждой масти, занумерованных числами 1,2…n. Подсчитать, сколькими способами можно выбрать 5 карт так, что среди них окажутся:

1) 5 последовательных карт одной масти;

2) 4 карты из 5-ти с одинаковыми номерами;

3) 3 карты с одним номером и 2 карты с другим;

4) 5 карт одной масти;

5) 5 последовательно занумерованных карт;

6) 3 карты из 5-ти с одним и тем же номером;

7) не более 2-х карт каждой масти.

Ответ: 4(n–4), 4n(n–1), 12n(n–1), , 45(n–4), , .

81. Сколькими способами можно расставить n нулей и k единиц так, чтобы между любыми 2-мя единицами находилось не менее m нулей?

Ответ: .

ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ

 


Дата добавления: 2018-04-15; просмотров: 1875; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!