Многокорпусное выпаривание. Сравнительная оценка схем многокорпусных выпарных установок, выбор оптимального числа корпусов установки.



В современных выпарных установках выпариваются очень большие количества воды. Выше было показано, что в однокорпусном аппарате на выпаривание 1 кг воды требуется более 1 кг греющего пара. Это привело бы к чрезмерно большим расходам его. Однако расход пара на выпаривание можно значительно снизить, если проводить процесс в многокорпусной выпарной установке. Как указывалось, принцип действия ее сводится к многократному использованию тепла греющего пара, поступающего в первый корпус установки, путем обогрева каждого последующего корпуса (кроме первого) вторичным паром из предыдущего корпуса.

Схема многокорпусной вакуум-выпарной установки, работающей при прямоточном движении греющего пара и раствора, показана на рис. 1Х-2.

Установка состоит из нескольких (в данном случае трех) корпусов. Исходный ра-р, обычно предварительно нагретый до темпе-ры кипения, поступает в первый корпус, обогреваемый свежим (первичным) паром. Вторичный пар из этого корпуса направляется в качестве греющего во второй корпус, где вследствие пониженного давления ра-р кипит при более низкой тем-ре, чем в первом.

Ввиду более низкого давления во втором корпусе ра-р, упаренный в первом корпусе, перемещается самотеком во второй корпус и здесь охлаждается до тем-ры кипения в этом корпусе. За счет выделяющегося при этом тепла образуется дополнительно некоторое количество вторичного пара. Такое явление, происходящее во всех корпусах установки, кроме первого, носит название самоиспарения раствора.

Аналогично упаренный ра-р из второго корпуса перетекает самотеком в третий корпус, который обогревается вторичным паром из второго корпуса.

Предварительный нагрев исходного ра-ра до тем-ры кипения в первом корпусе производится в отдельном подогревателе 4, что позволяет избежать увеличения поверхности нагрева в первом корпусе.

Вторичный пар из последнего корпуса (в данном случае из третьего) отводится в барометрический конденсатор 5, в котором при конденсации пара создается требуемое разрежение. Воздух и неконденсирующиеся газы, попадающие в установку главным образом с охлаждающей водой (в конденсаторе), а также через неплотности трубопроводов и резко ухудшающие теплопередачу, отсасываются через ловушку-брызгоулавливатель 6 вакуум-насосом 7.

С помощью вакуум-насоса поддерживается также устойчивый вакуум, т.к. остаточное давление в конденсаторе может изменяться с колебанием тем-ры воды, поступающей в конденсатор.

Необходимым условием передачи тепла в каждом корпусе д. б. наличие некоторой полезной разности температур, определяемой разностью тем-р греющего пара и кипящего ра-ра. Вместе с тем, давление вторичного пара в каждом предыдущем корпусе должно быть больше его давления в последующем. Эти разности давлений создаются при избыточном давлении в первом корпусе, или вакууме в последнем корпусе, или же при том и другом одновременно.

Основные схемы многокорпусных установок. Применяемые схемы многокорпусных выпарных установок различаются по давлению вторичного пара в последнем корпусе. В соответствии с этим признаком установки делятся на работающие под разрежением и под избыточным давлением.

Наиболее распространены выпарные установки первой группы. Помимо установки, показанной на рис. 1Х-2, в промышленной практике применяют установки аналогичного типа, обладающие повышенной экономичностью за счет использования тепла пара низкого потенциала.

Многокорпусные выпарные установки различаются также по взаимному направлению движения греющего пара и выпариваемого раствора. Кроме наиболее широко распространенных установок с прямоточным движением пара и раствора (см. рис. 1Х-2), применяются также противоточные выпарные установки, в которых греющий пар и выпариваемый раствор перемещаются из корпуса в корпус во взаимно противоположных направлениях (рис. 1Х-З).

Исходный раствор подается насосом в последний по ходу греющего пара (третий) корпус, из которого упаренный ра-р перекачивается во второй корпус, и т. д., причем из первого корпуса удаляется окончательно упаренный ра-р. Свежий (первичный) пар поступает в первый корпус, а вторичный пар из этого корпуса направляется для обогрева второго корпуса, затем вторичный пар из предыдущего корпуса используется для обогрева последующего. Из последнего корпуса вторичный пар удаляется в конденсатор.

Отметим одно существенное достоинство многокорпусных выпарных установок, работающих по противоточной схеме.

В первом корпусе выпарной прямоточной установки (см. рис. 1Х-2) наименее концентрированный ра-р получает необходимое для выпаривания тепло от греющего пара наиболее высоких рабочих параметров, а в последнем корпусе наиболее концентрированный (и наиболее вязкий) ра-р выпаривается при помощи вторичного пара наиболее низких параметров. Таким образом от первого корпуса к последнему (по ходу раствора) повышается концентрация и понижается температура выпариваемого раствора, что приводит к возрастанию его вязкости. В результате коэффициенты теплопередачи уменьшаются от первого корпуса к последнему.

В многокорпусных противоточных установках (рис. 1Х-3) в первом корпусе наиболее концентрированный ра-р выпаривается за счет тепла пара наиболее высоких параметров, в то время как в последнем корпусе исходный р-р самой низкой концентрации получает тепло от вторичного пара, имеющего наиболее низкие давления и тем-ру. Поэтому при противотоке коэф-ты теплопередачи значительно меньше изменяются по корпусам, чем при прямотоке.

Однако необходимость перекачивания выпариваемого раствора из корпусов, где давление меньше, в корпуса с более высоким давлением является серьезным недостатком противоточной схемы, так как применение промежуточных насосов (насосы 4 и 5 на рис. 1Х-3) связано со значительным возрастанием эксплуатационных расходов.

Выбор числа корпусов. С увеличением числа корпусов многокорпусной выпарной установки снижается расход греющего пара на каждый килограмм выпариваемой воды. Как было показано, в однокорпусном выпарном аппарате на выпаривание 1 кг воды приближенно расходуется 1 кг греющего пара. Соответственно в двухкорпусной выпарной установке наименьший расход греющего пара на выпаривание 1 кг воды должен составлять 1/2 кг, в трехкорпусной - 1/3 кг, в четырехкорпусной -.1/4 и т. д.

Т. обр., расход греющего пара на выпаривание 1 кг воды в многокорпусных выпарных установках приближенно обратно пропорционален числу корпусов.

В действительности расход греющего пара на 1 кг выпариваемой воды больше и практически в зависимости от числа корпусов выпарной установки.

Однако основной причиной, определяющей предел числа корпусов выпарной установки, является возрастание температурных потерь с увеличением числа корпусов. Для осуществления теплопередачи необходимо обеспечить в каждом корпусе некоторую полезную разность температур, т. е. разность температур между греющим паром и кипящим раствором, равную обычно не менее 5-7°С для аппаратов с естественной циркуляцией и не менее 3°С для аппаратов с принудительной циркуляцией.

Чем выше концентрация выпариваемого раствора, тем больше температурные потери и тем меньшее число корпусов м. б. последовательно соединено в одну установку. Вместе с тем чем интенсивней циркуляция раствора, тем меньше допустимая полезная разность тем-р в каждом корпусе и тем больше предельное число корпусов.

Оптимальное число корпусов можно определять с помощью расчета на ЭВМ.


Дата добавления: 2018-05-02; просмотров: 1681; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!