Закон сохранения момента импульса.

Материа́льная то́чка — простейшая физическая модель в механике — абстрактное тело нулевых размеров. Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого в конкретной ситуации можно пренебречь. Тело можно считать материальной точкой в случаях, когда оно перемещается поступательно на большие (по сравнению с его размерами) расстояния; например, Земля радиусом около 6,4 тыс. км является материальной точкой в своем годовом движении вокруг Солнца (радиус орбиты - так называемой эклиптики - около 150 млн. км). Аналогично, понятие> материальной точки применимо, если вращательную часть движения тела можно в условиях рассматриваемой задачи не учитывать (например, пренебречь суточным вращением Земли при изучении годового движения). Системой материальных точек называют совокупность тел, если каждое из них можно рассматривать как материальную точку. В качестве примера системы материальных точек можно назвать Солнечную систему, разреженный газ. Абсолютно твердое тело - это такая система материальных точек, расстояние между которыми в процессе движения сохраняются неизменными. Система отсчёта — это совокупность тела отсчёта, системы координат и системы отсчёта времени, связанных с этим телом, по отношению к которому изучается движение (или равновесие) каких-либо других материальных точек или тел.   2. При движении материальной точки М ее координаты и радиус-вектор изменяются с течением времени t. Поэтому для задания закона движения м.т. необходимо указать либо вид функциональной зависимости всех трех ее координат от времени:  (1.2) либо зависимость от времени радиус-вектора этой точки   (1.3) Три скалярных уравнения (1.2) или эквивалентное им одно векторное уравнение (1.3) называются кинематическими уравнениями движения материальной точки. Траектория - линия, описываемая мат. точкой в пространстве. Длина участка траектории пройдённого материальной точкой с момента начала отсчета наз. длиной пути. DS= DS(t). Вектор Dr= r- r0 , проведенный из начального положения движущейся точки в положение её в данный момент наз. перемещением. Прямолинейное движение — механическое движение, при котором вектор перемещения ∆r не меняется по направлению и по величине равен длине пути, пройденного телом   3. Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и ускорение тела также постоянно изменяются по направлению, а в общем случае и по модулю. Мгновенная скорость тела при криволинейном движении направлена в любой точке траектории по касательной к траектории в этой точке. Этот вывод о направлении мгновенной скорости можно подтвердить, наблюдая, как движутся брызги из-под колес буксующего автомобиля или искры при заточке деталей на вращающемся точильном камне. При криволинейном движении направление скорости тела меняется, поэтому такое движение является неравномерным, даже если модуль скорости остается постоянным. Ускорение при криволинейном движении: нормальное, тангенциальное, полное. Тангенциальная составляющая ускорения - характеризует быстроту изменения скорости по модулю Нормальная составляющая ускорения - направлена по нормали к центру кривизны - характеризует быстроту изменения скорости по направлению Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих .   4. Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения.  Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории. Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.   Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.   5. Кругово́е движе́ние — это вращение по кругу, т.е. это круговой путь по круговой орбите. Оно может быть равномерным (с постоянной угловой скоростью) или неравномерным (с переменной угловой скоростью). Вращение трёхмерного тела вокруг неподвижной оси включает в себя круговое движение каждой его части. Мы можем говорить о круговом движении объекта только если можем пренебречь его размерами, так что мы имеем движение массивной точки на плоскости. Например, центр масс тела может совершать круговое движение. Примеры кругового движения: искусственный спутник на геосинхронной орбите, камень на верёвке, вращающийся по кругу (см. метание молота), болид, совершающий поворот, электрон, движущийся перпендикулярно постоянному магнитному полю, зубчатое колесо, вращающееся внутри механизма.   6. Угловой скоростью наз. векторная величина, равная первой производной угла поворота тела по времени.     Угловым ускорением наз. векторная величина равная первой производной скорости по времени.При ускоренном движении вектор ε сонаправлен ω при замедленном противонаправлен.     7.   8. Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции. Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета. Инерциальной системой отсчета является такая система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Первый закон Ньютона утверждает существование инерциальных систем отсчета.   9. Масса тела — физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10-12 их значения). Сила – это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры. Соотношение (3) выражает второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела). В СИ коэффициент пропорциональности k = 1. Тогда a = F/m, или F = ma = mdv/dt(4) Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (6.4) ее можно внести под знак производной: F=(d/dt)(mv).(5) Векторная величина p = mv,(6) численно равная произведению массы ма­териальной точки на ее скорость и име­ющая направление скорости, называется импульсом (количеством движения)этой материальной точки. Подставляя (6) в (5), получим F=dp/dt(7) Это выражение — более общая формули­ровка второго закона Ньютона:скорость изменения импульса материальной точки равна действующей на нее силе.   10. 3 закон Ньютона:2 тела действуют друг на друга с силами, направленными вдоль одной прямой. Эти силы равны по величине и противоположны по направлению. 3-ий закон позволяет перейти от динамики отдельной матерьяльной точки к динамике системы матерьяльных точек. Это следует из того, что и для сист.мат. точек взаимодействия этих матерьяльных точек сводятся к парным взаимодействиям. Пример:  1).В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковой силой, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет — тянут обе партии с одинаковой силой,— а та, которая сильнее упирается в Землю. 2). Возьмем в руки два одинаковых динамометра, сцепим их крюками и будем тянуть в разные стороны (рис. 18). Оба динамометра покажут одинаковые по модулю силы натяжения, т. е. F1=-F2.   11. И́мпульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости: .

Закон сохранения момента импульса.

Момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если суммарный момент внешних сил, действующих на систему равен нулю. в изолированной системе сумма моментов импульса всех тел есть величина постоянная

J1ω1+J2ω2+…+Jnωn=const где Ji и ωi моменты инерции и угловые скорости тел, составляющих изолированную систему. Из основного уравнения динамики вращательного движения при М=0 получаем d/dt(Jω)=0èJω=constВ изолированной системе сумма моментов импульса всех тел есть величина постоянная.

 

12. - уравнение И.В. Мещерского.

Реактивное движение - движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. Реактивное движение описывается, исходя из закона сохранения импульса.

 

13. Энергия (от греч. enérgeia — действие, деятельность), общая количественная мера движения и взаимодействия всех видов материи. Э. в природе не возникает из ничего и не исчезает; она только может переходить из одной формы в другую. Понятие Э. связывает воедино все явления природы. Вид энергии: механическая, тепловая, электромагнитная, гравитационная, ядерная и т.д.

Механическая работа — это физическая величина, являющаяся количественной характеристикой действия силы F на процесс γ(t), зависящая от численной величины, направления силы и от перемещения точки её приложения.

 

14. Виды механической энергии – Кинитическая и Потенциальная.

 Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль.

Потенциальная энергия — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Единицей измерения энергии в СИ является Джоуль.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Кинетическая энергия механической системы — это энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dW тела, т. е. dA = dW.

 

15. Потенциальная энергия — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Единицей измерения энергии в СИ является Джоуль.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Консервативные (conservativus - охранительный) - такие силы, РАБОТА которых не зависит от траектории, а определяются только начальным и конечным положением материальной точки. Силы, не обладающие только что названным свойством, называют неконсервативными. Для того чтобы узнать, консервативна сила либо нет, надо вычислить ее работу.

 

16. Полной энергиейназывается сумма кинетической и потенциальной энергий. Механическая система называется консервативной, если все приложенные к ней непотенциальные силы не совершают работу, а все потенциальные силы постоянны во времени. Потенциальная энергия системы может изменяться только за счет изменения ее консервации, поэтому если конфигурация системы не меняется, то Wп = const à дWп / dt = 0.

Полная механическая энергия:

- характеризует движение и взаимодействие тел; и

- является функцией скоростей и взаимного расположения тел.

Закон сохранения энергии — фундаментальный закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. В классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). Частный случай — Закон сохранения механической энергии — механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения механическая энергия не возникает из ничего и не может никуда исчезнуть. В замкнутой системе полная механическая энергия этой системы остается величиной постоянной Wполн=Wk+Wn Wk+Wn = const

Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. З.с.э отражает понятие однородности времени. Не важно в какой момент времени рассматривается система, з. для нее будет выполнятся. Можно добавить к законам сохранения массы

 

17. Моментом инерции матерьяльной точки относительно оси называется величина J = m r (ст.2).Где r – расстояние от точки до оси вращения.

Wk = m*v*v / 2.Если тело состоит из нескольких матерьяльных точек, то момент его инерции будет равен сумме моментов инерций этих точек. Эта формула справедлива для дискретного распределения масс. В случае непрерывногораспределения масс J = (интеграл) v (ст.2) dm .

Теорема Штейнера:Моментом инерции твердого тела относительно любой оси равен сумме момента инерции относительно оси проходящей через центр масс и произведению массы этого тела на квадрат расстояния между осями. I=I0+md2 .Величина I, равная сумме произведений элементарных масс на квадраты их расстояния от некоторой оси, наз. моментом инерции тела относительно данной оси. I=SmiRi2 Суммирование производиться по всем элементарным массам на которые можно разбить тело.

Моментом инерции твердого тела относительно оси называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до оси.

Момент инерции однородного цилиндра - это соотношение выражает теорему об изменении момента количества 2)движения материальной точки относительно центра: производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна геометрической сумме моментов сил, действующих на точку, относительно того же центра.

 

19. Кинетическая энергия вращения.

Моментом инерции мат.т. наз.физ.величина численно равная произведению массы мат.т. на квадрат расстояния этой точки до оси вращения.Wki =miV2i/2 Vi -Wri Wi=miw2r2i/2 =w2/2*miri2  Ii=mir2i  момент инерции твердого тела равен сумме всех мат.т I=Simir2i  моментом инерции твердого тела наз. физ.величина равная сумме произведений мат.т. на квадраты расстояний от этих точек до оси. Wi-IiW2/2 Wk=IW2/2

Wk =SiWki  момент инерции при вращательном движении явл. аналогом массы при поступательном движении. I=mR2/2.

 Кинетическая энергия катящегося шара.При вращательном движении катящегося тела каждая точка участвует в 2х движениях – поступательном и вращательном. Скорость поступательного движения всех точек колеса одинакова и равна скорости поступательного движения колеса в целом. Wk = 1/2 m v пост. (ст.2) + 1/2 J w (ст.2)

20. Момент силы (синонимы: крутящий момент; вращательный момент; вертящий момент; вращающий момент) — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. Моментом силы M называется величина M=r *F.

Уравнение (закон) динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.    или

где: JZ - момент инерции тела относительно оси Z; e -угловое ускорение.

 

21. Моментом импульса (моментом количества движения) матерьяльной точки относительно оси называется векторная величина L = r * P ; где все величины – векторы ; r – расстояние от оси вращения до этой точки.

Момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если суммарный момент внешних сил, действующих на систему равен нулю. в изолированной системе сумма моментов импульса всех тел есть величина постоянная

J1ω1+J2ω2+…+Jnωn=const где Ji и ωi моменты инерции и угловые скорости тел, составляющих изолированную систему. Из основного уравнения динамики вращательного движения при М=0 получаем d/dt(Jω)=0èJω=constВ изолированной системе сумма моментов импульса всех тел есть величина постоянная.

 

22. Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив закон инерции: любое тело, на которое не действуют внешние силы или действие этих сил компенсируется, находится в состоянии покоя или равномерного прямолинейного движения.

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности, все ИСО равноправны, и все законы физики инвариантны относительно перехода из одной ИСО в другую. Это значит, что проявления законов физики в них выглядят одинаково, и записи этих законов имеют одинаковую форму в разных ИСО.


Дата добавления: 2018-05-02; просмотров: 385; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!