Основные стратегии решения задач



 

В данной главе мы сосредоточим свое внимание на одной общей схеме для представления задач, называемой пространством состояний . Пространство состояний — это граф, вершины которого соответствуют ситуациям, встречающимся в задаче ("проблемные ситуации"), а решение задачи сводится к поиску пути в этом графе. Мы изучим на примерах, как формулируются задачи в терминах пространства состояний, а также обсудим общие методы решения задач, представленных в рамках этого формализма. Процесс решения задачи включает в себя поиск в графе, при этом, как правило, возникает проблема, как обрабатывать альтернативные пути поиска. В этой главе будут представлены две основные стратегии перебора альтернатив, а именно поиск в глубину и поиск в ширину.

 

Предварительные понятия и примеры

 

Рассмотрим пример, представленный на рис. 11.1. Задача состоит в выработке плана переупорядочивания кубиков, поставленных друг на друга, как показано на рисунке. На каждом шагу разрешается переставлять только один кубик. Кубик можно взять только тогда, когда его верхняя поверхность свободна. Кубик можно поставить либо на стол, либо на другой кубик. Для того, чтобы построить требуемый план, мы должны отыскать последовательность ходов, реализующую заданную трансформацию.

Эту задачу можно представлять себе как задачу выбора среди множества возможных альтернатив. В исходной ситуации альтернатива всего одна: поставить кубик С на стол. После того как кубик С поставлен на стол, мы имеем три альтернативы:

• поставить А на стол или

• поставить А на С, или

• поставить С на А.

 

Рис. 11.1. Задача перестановки кубиков.

Ясно, что альтернативу "поставить С на стол" не имело смысла рассматривать всерьез, так как этот ход никак не влияет на ситуацию.

Как показывает рассмотренный пример, с задачами такого рода связано два типа понятий:

(1) Проблемные ситуации.

(2) Разрешенные ходы или действия, преобразующие одни проблемные ситуации в другие.

Проблемные ситуации вместе с возможными ходами образуют направленный граф, называемый пространством состояний . Пространство состояний для только что рассмотренного примера дано на рис. 11.2. Вершины графа соответствуют проблемным ситуациям, дуги — разрешенным переходам из одних состояний в другие. Задача отыскания плана решения задачи эквивалентна задаче построения пути между заданной начальной ситуацией ("стартовой" вершиной) и некоторой указанной заранее конечной ситуацией, называемой также целевой вершиной .

На рис. 11.3 показан еще один пример задачи: головоломка "игра в восемь" в ее представление в виде задачи поиска пути. В головоломке используется восемь перемещаемых фишек, пронумерованных цифрами от 1 до 8. Фишки располагаются в девяти ячейках, образующих матрицу 3 на 3. Одна из ячеек всегда пуста, и любая смежная с ней фишка может быть передвинута в эту пустую ячейку. Можно сказать и по-другому, что пустой ячейке разрешается перемещаться, меняясь местами с любой из смежных с ней фишек. Конечная ситуация — это некоторая заранее заданная конфигурация фишек, как показано на рис. 11.3.

 

Рис. 11.2. Графическое представление задачи манипулирования кубиками. Выделенный путь является решением задачи рис. 11.1.

Нетрудно построить аналогичное представление в виде графа и для других популярных головоломок. Наиболее очевидные примеры — это задача о "ханойской башне" и задача о перевозке через реку волка, козы и капусты. Во второй из этих задач предполагается, что вместе с человекам в лодке помещается только один объект и что человеку приходится охранять козу от волка и капусту от козы. С описанной парадигмой согласуются также многие задачи, имеющие практическое значение. Среди них — задача о коммивояжере, которая может служить моделью для многих практических оптимизационных задач. В задаче дается карта с n городами в указываются расстояния, которые надо преодолеть по дорогам при переезде из города в город. Необходимо найти маршрут, начинающийся в некотором городе, проходящий через все города и заканчивающиеся в том же городе. Ни один город, за исключением начального, не разрешается посещать дважды.

 

Рис. 11.3. "Игра в восемь" и ее представление в форме графа.

Давайте подытожим те понятия, которые мы ввели, рассматривая примеры. Пространство состояний некоторой задачи определяет "правила игры": вершины пространства состояния соответствуют ситуациям, а дуги — разрешенным ходам или действиям, или шагам решения задачи. Конкретная задача определяется

• пространством состояний

• стартовой вершиной

• целевым условием (т.е. условием, к достижению которого следует стремиться); "целевые вершины" — это вершины, удовлетворяющие этим условиям.

Каждому разрешенному ходу или действию можно приписать его стоимость. Например, в задаче манипуляции кубиками стоимости, приписанные тем или иным перемещениям кубиков, будут указывать нам на то, что некоторые кубики перемещать труднее, чем другие. В задаче о коммивояжере ходы соответствуют переездам из города в город. Ясно, что в данном случае стоимость хода — это расстояние между соответствующими городами.

В тех случаях, когда каждый ход имеет стоимость, мы заинтересованы в отыскании решения минимальной стоимости. Стоимость решения — это сумма стоимостей дуг, из которых состоит "решающий путь" — путь из стартовой вершины в целевую. Даже если стоимости не заданы, все равно может возникнуть оптимизационная задача: нас может интересовать кратчайшее решение.

Прежде тем будут рассмотрены некоторые программы, реализующие классический алгоритм поиска в пространстве состоянии, давайте сначала обсудим. как пространство состояний может быть представлено в прологовской программе.

Мы будем представлять пространство состояний при помощи отношения

после( X, Y)

которое истинно тогда, когда в пространстве состояний существует разрешенный ход из вершины X в вершину Y. Будем говорить, что Y — это преемник вершины X. Если с ходами связаны их стоимости, мы добавим третий аргумент, стоимость хода:

после( X, Y, Ст)

Эти отношения можно задавать в программе явным образом при помощи набора соответствующих фактов. Однако такой принцип оказывается непрактичным и нереальным для тех типичных случаев, когда пространство состояний устроено достаточно сложно. Поэтому отношение следования после обычно определяется неявно, при помощи правил вычисления вершин-преемников некоторой заданной вершины. Другим вопросом, представляющим интерес с самой общей точки зрения, является вопрос о способе представления состояний, т.е. самих вершин. Это представление должно быть компактным, но в то же время оно должно обеспечивать эффективное выполнение необходимых операций, в частности операции вычисления вершин-преемников, а возможно и стоимостей соответствующих ходов.

Рассмотрим в качестве примера задачу манипулирования кубиками, проиллюстрированную на рис. 11.1. Мы будем рассматривать более общий случай, когда имеется произвольное число кубиков, из которых составлены столбики, — один или несколько. Число столбиков мы ограничим некоторым максимальным числом, чтобы задача была интереснее. Такое ограничение, кроме того, является вполне реальным, поскольку рабочее пространство, которым располагает робот, манипулирующий кубиками, ограничено.

Проблемную ситуацию можно представить как список столбиков. Каждый столбик в свою очередь представляется списком кубиков, из которых он составлен. Кубики упорядочены в списке таким образом, что самый верхний кубик находится в голове списка. "Пустые" столбики изображаются как пустые списки. Таким образом, исходную ситуацию рис. 11.1 можно записать как терм

[ [с, а, b], [], [] ]

Целевая ситуация — это любая конфигурация кубиков, содержащая, столбик, составленный из всех имеющихся кубиков в указанном порядке. Таких ситуаций три:

[ [a, b, c], [], [] ]

[ [], [а, b, с], [] ]

[ [], [], [a, b, c] ]

Отношение следования можно запрограммировать, исходя из следующего правила: ситуация Сит2 есть преемник ситуации Сит1, если в Сит1 имеется два столбика Столб1 и Столб2, такие, что верхний кубик из Столб1 можно поставить сверху на Столб2 и получить тем самым Сит2. Поскольку все ситуации - это списки столбиков, правило транслируется на Пролог так:

после( Столбы, [Столб1, [Верх1 | Столб2], Остальные]) :-

% Переставить Верх1 на Столб2

удалить( [Верх1 | Столб1], Столб1, Столб1),

% Найти первый столбик

удалить( Столб2, Столбы1, Остальные).

% Найти второй столбик

 

удалить( X, [X | L], L).

удалить( X, [Y | L], [Y | L1] ) :-

удалить( L, X, L1).

В нашем примере целевое условие имеет вид:

цель( Ситуация) :-

принадлежит [а,b,с], Ситуация)

Алгоритм поиска мы запрограммируем как отношение

решить( Старт, Решение)

где Старт — стартовая вершина пространства состояний, а Решение — путь, ведущий из вершины Старт в любую целевую вершину. Для нашего конкретного примера обращение к пролог-системе имеет вид:

?- решить( [ [с, а, b], [], [] ], Решение).

В результате успешного поиска переменная Решение конкретизируется и превращается в список конфигураций кубиков. Этот список представляет собой план преобразования исходного состояния в состояние, в котором все три кубика поставлены друг на друга в указанном порядке [а, b, с].

 

Стратегия поиска в глубину

 

Существует много различных подходов к проблеме поиска решающего пути для задач, сформулированных в терминах пространства состояний. Основные две стратегии поиска — это поиск в глубину и поиск в ширину . В настоящем разделе мы реализуем первую из них.

Мы начнем разработку алгоритма и его вариантов со следующей простой идеи:

 

Для того, чтобы найти решающий путь Реш из заданной вершины В в некоторую целевую вершину, необходимо:

• если В — это целевая вершина, то положить Реш = [В], или

• если для исходной вершины В существует вершина-преемник В1, такая, что можно провести путь Реш1 из В1 в целевую вершину, то положить Реш = [В | Peш1].

 

 

Рис. 11.4. Пример простого пространства состояний: а — стартовая вершина, f и j — целевые вершины. Порядок, в которой происходит проход по вершинам пространства состояний при поиске в глубину: а , b , d , h , e , i , j . Найдено решение [a, b, e, j]. После возврата обнаружено другое решение: [а, с, f].

На Пролог это правило транслируется так:

решить( В, [В] ) :-

цель( В).

решить( В, [В | Реш1] ) :-

после( В, В1 ),

решить( В1, Реш1).

Эта программа и есть реализация поиска в глубину. Мы говорим "в глубину", имея в виду тот порядок, в котором рассматриваются альтернативы в пространстве состояний. Всегда, когда алгоритму поиска в глубину надлежит выбрать из нескольких вершин ту, в которую следует перейти для продолжения поиска, он предпочитает самую "глубокую" из них. Самая глубокая вершина — это вершина, расположенная дальше других от стартовой вершины. На рис. 11.4 мы видим на примере, в каком порядке алгоритм проходит по вершинам. Этот порядок в точности соответствует результату трассировки процесса вычислений в пролог-системе при ответе на вопрос

?- решить( а, Реш).

Поиск в глубину наиболее адекватен рекурсивному стилю программирования, принятому в Прологе. Причина этого состоит в том, что, обрабатывая цели, пролог-система сама просматривает альтернативы именно в глубину.

Поиск в глубину прост, его легко программировать и он в некоторых случаях хорошо работает. Программа для решения задачи о восьми ферзях (см. гл. 4) фактически была примером поиска в глубину. Для того, чтобы можно было применить к этой задаче описанную выше процедуру решить, необходимо сформулировать задачу в терминах пространства состояний. Это можно сделать так:

• вершины пространства состояний — позиции, в которых поставлено 0 или более ферзей на нескольких последовательно расположенных горизонтальных линиях доски;

• вершина-преемник данной вершины может быть получена из нее после того, как в соответствующей позиции на следующую горизонтальную линию доски будет поставлен еще один ферзь, причем таким образом, чтобы ни один из уже поставленных ферзей не оказался под боем;

• стартовая вершина — пустая доска (представляется пустым списком);

• целевая вершина — любая позиция с восемью ферзями (правило получения вершины-преемника гарантирует, что ферзи не бьют друг друга).

Позицию на доске будем представлять как список Y-координат поставленных ферзей. Получаем программу:

после( Ферзи, [Ферзь | Ферзи] ) :-

принадлежит( Ферзь, [1, 2, 3, 4, 5, 6, 7, 8] ),

% Поместить ферзя на любую вертикальную линию

небьет( Ферзь, Ферзи).

 

цель( [ _, _, _, _, _, _, _, _ ] )

% Позиция с восемью ферзями

Отношение небьет означает, что Ферзь не может поразить ни одного ферзя из списка Ферзи. Эту процедуру можно легко запрограммировать так же, как это сделано в гл. 4. Ответ на вопрос

?- решить( [], Решение)

будет выглядеть как список позиций с постепенно увеличивающимся количеством поставленных ферзей. Список завершается "безопасной" конфигурацией из восьми ферзей. Механизм возвратов позволит получить и другие решения задачи.

Поиск в глубину часто работает хорошо, как в рассмотренном примере, однако наша простая процедура решить может попасть в затруднительное положение, причем многими способами. Случится ли это или нет — зависит от структуры пространства состояний. Для того, чтобы затруднить работу процедуры решить в примере рис. 11.4, достаточно внести в задачу совсем небольшое изменение: добавить дугу, ведущую из h  в d , чтобы получился цикл (рис. 11.5). В этом случае поиск будет выглядеть так: начиная с вершины а , спускаемся вплоть до h , придерживаясь самой левой ветви графа. На этот раз, в отличие от рис. 11.4, у вершины h  будет преемник d . Поэтому произойдет не возврат из h , а переход к d . Затем мы найдем преемника вершины d , т.е. вершину h , и т.д., в результате программа зациклится между h и d .

 

Рис. 11.5. Начинаясь в а , поиск в глубину заканчивается бесконечным циклом между d и h : a , b , d , h , d , h , d ….

Очевидное усовершенствование нашей программы поиска в глубину — добавление к ней механизма обнаружения циклов. Ни одну из вершин, уже содержащихся в пути, построенном из стартовой вершины в текущую вершину, не следует вторично рассматривать в качестве возможной альтернативы продолжения поиска. Это правило можно сформулировать в виде отношения

вглубину( Путь, Верш, Решение)

Как видно из рис. 11.6, Верш — это состояние, из которого необходимо найти путь до цели; Путь — путь (список вершин) между стартовой вершиной и Верш; Решение — Путь, продолженный до целевой вершины.

 

Рис. 11.6. Отношение вглубину( Путь, В, Решение).

Для облегчения программирования вершины в списках, представляющих пути, будут расставляться в обратном порядке. Аргумент Путь нужен для того,

(1) чтобы не рассматривать тех преемников вершины Верш, которые уже встречались раньше (обнаружение циклов);

(2) чтобы облегчить построение решающего пути Решение. Соответствующая программа поиска в глубину показана на рис. 11.7.

 

решить( Верш, Решение) :-

вглубину( [], Верш, Решение).

 

вглубину( Путь, Верш, [Верш | Путь] ) :-

цель( Верш).

вглубину( Путь, Верш, Реш) :-

после( Верш, Верш1),

not принадлежит( Верш1, Путь), % Цикл?

вглубину( [Верш | Путь], Верш1, Реш).

Рис. 11.7. Программа поиска в глубину без зацикливания.

 

Теперь наметим один вариант этой программы. Аргументы Путь и Верш процедуры вглубину можно объединить в один список [Верш | Путь]. Тогда, вместо вершины-кандидата Верш, претендующей на то, что она находится на пути, ведущем к цели, мы будем иметь путь -кандидат П = [Верш | Путь], который претендует на то, что его можно продолжить вплоть до целевой вершины. Программирование соответствующего предиката

вглубину( П, Решение)

оставим читателю в качестве упражнения.

Наша процедура поиска в глубину, снабженная механизмом обнаружения циклов, будет успешно находить решающие пути в пространствах состояний, подобных показанному на рис. 11.5. Существуют, однако, такие пространства состоянии, в которых наша процедура не дойдет до цели. Дело в том, что многие пространства состояний бесконечны. В таком пространстве алгоритм поиска в глубину может "потерять" цель, двигаясь вдоль бесконечной ветви графа. Программа будет бесконечно долго обследовать эту бесконечную область пространства, так и не приблизившись к цели. Пространство состояний задачи о восьми ферзях, определенное так, как это сделано в настоящем разделе, на первый взгляд содержит ловушку именно такого рода. Но оказывается, что оно все-таки конечно, поскольку Y-координаты выбираются из ограниченного множества, и поэтому на доску можно поставить "безопасным образом" не более восьми ферзей.

 

вглубину2( Верш, [Верш], _ ) :-

цель( Верш).

вглубину2( Верш, [Верш | Реш], МаксГлуб) :-

МаксГлуб > 0,

после( Верш, Верш1),

Maкс1 is МаксГлуб - 1,

вглубину2( Верш1, Реш, Maкс1).

Рис. 11.8. Программа поиска в глубину с ограничением по глубине.

 

Для того, чтобы предотвратить бесцельное блуждание по бесконечным ветвям, мы можем добавить в базовую процедуру поиска в глубину еще одно усовершенствование, а именно, ввести ограничение на глубину поиска. Процедура поиска в глубину будет тогда иметь следующие аргументы:

вглубину2( Верш, Решение, МаксГлуб)

Не разрешается вести поиск на глубине большей, чем МаксГлуб. Программная реализация этого ограничения сводится к уменьшению на единицу величины предела глубины при каждом рекурсивном обращений к вглубину2 и к проверке, что этот предел не стал отрицательным. В результате получаем программу, показанную на рис. 11.8.

 

Упражнения

 

11.1. Напишите процедуру поиска в глубину (с обнаружением циклов)

вглубину1( ПутьКандидат, Решение)

отыскивающую решающий путь Решение как продолжение пути ПутьКандидат. Оба пути представляйте списками вершин, расположенных в обратном порядке так, что целевая вершина окажется в голове списка Решение.

11.2. Напишите процедуру поиска в глубину, сочетающую в себе обнаружение циклов с ограничением глубины, используя рис. 11.7 и 11.8.

11.3. Проведите эксперимент по применению программы поиска в глубину к задаче планирования в "мире кубиков" (рис. 11.1).

11.4. Напишите процедуру

отобр( Ситуация)

для отображения состояния задачи "перестановки кубиков". Пусть Ситуация — это список столбиков, а столбик, в свою очередь, — список кубиков. Цель

отобр( [ [a], [e, d], [с, b] ] )

должна отпечатать соответствующую ситуацию, например так:

e с

a d b

==============

 

Поиск в ширину

 

В противоположность поиску в глубину стратегия поиска в ширину предусматривает переход в первую очередь к вершинам, ближайший к стартовой вершине. В результате процесс поиска имеет тенденцию развиваться более в ширину, чем в глубину, что иллюстрирует рис. 11.9.

 

Рис. 11.9. Простое пространство состояний: а — стартовая вершина, f и j — целевые вершины. Применение стратегии поиска в ширину дает следующий порядок прохода по вершинам: а, b, c, d, e, f. Более короткое решение [a, c, f] найдено раньше, чем более длинное [а, b, e, j]

Поиск в ширину программируется не так легко, как поиск в глубину. Причина состоят в том, что нам приходится сохранять все множество альтернативных вершин-кандидатов, а не только одну вершину, как при поиске в глубину. Более того, если мы желаем получить при помощи процесса поиска решающий путь, то одного множества вершин недостаточно. Поэтому мы будем хранить не множество вершин-кандидатов, а множество путей -кандидатов. Таким образом, цель

вширину( Пути, Решения)

истинна только тогда, когда существует путь из множества кандидатов Пути, который может быть продолжен вплоть до целевой вершины. Этот продолженный путь и есть Решение.

 


Дата добавления: 2018-05-01; просмотров: 664; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!