Представление ХТС в виде графов, матриц и таблиц.



 

Структуру ХТС обычно рассматривают в терминах теории графов, т.е. в виде ориентированного графа, вершины которого соответствуют аппаратам, а дуги – потокам (например, так как на Рис.4.2). На Рис.4.2 номера вершин обозначены большим курсивом (справа сверху от вершины), а номера потоков – малым прямым шрифтом (под линией соответствующего потока).

Рис.4.2. Представление ХТС в виде ориентированного графа

Последовательность сцепленных дуг, позволяющая пройти от одной вершины к другой, называется путем. Путь можно обозначить как через последовательность дуг, так и через последовательность вершин. Путь, начальная вершина которого совпадает с конечной, причем каждая вершина, за исключением начальной, проходится только один раз, называетсяконтуром. Например, на Рис.4.2 имеются три контура (по вершинам): 2-3-4-2, 3-4-3 и 6-7-6.

Комплексом, называется часть графа, вершины которого обладают следующими свойствами:

· каждая из вершин и дуг комплекса входит в один из контуров графа;

· если вершина i входит в комплекс, то в этот комплекс входят также все вершины, входящие в контуры, которые содержат вершину i.

Например, на графе, представленном на Рис.4.2 имеются два комплекса (по вершинам): 2-3-4 и 6-7. В первый комплекс входят два контура (2-3-4-2 и 3-4-3), а во второй – один (6-7-6).

Представленная на Рис.4.2 схема движения материальных потоков (граф) является достаточно простой, и, поэтому позволяет проводить свой анализ без применения каких либо программных продуктов. В случае более сложной схемы, проводить анализ становится затруднительно, т.к. при поиске оптимального множества разрываемых потоков комплексов необходимо проводить анализ достаточно большого количества информации и быстродействия. При использовании для анализа структуры ХТС специальных алгоритмов возникает проблема ввода в компьютер структурной схемы, т.е. ее формализация в каком либо числовом виде. В зависимости от выбранного способа анализа, структуру ХТС обычно формализуют в виде матрицы смежности или в виде списка смежности.

Матрица смежности представляет собой двоичную таблицу, количество строк и столбцов которой равны количеству вершин графа. Для учета входных и выходных потоков матрицу смежности добавляют нулевой строкой и столбцом, учитывая как нулевую вершину – окружающую среду. В случае если между двумя вершинами есть связь, то элементу матрицы смежности, находящемся на пересечении столбца и строки с соответствующими номерами вершин, присваивается значение "1", а в случае отсутствия связи – "0". Например, для графа, представленного на Рис.4.2 можно составить следующую матрицу смежности:

 

  0 1 2 3 4 5 6 7
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 0 1 0 0 0
4 0 0 1 1 0 1 0 0
5 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 1
7 1 0 0 0 0 0 1 0

Рис.4.3. Матрица смежности

Список смежности для графа, представленного на Рис.4.2 можно представить в виде:

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 2 3 4 4 4 5 7 6 7
1 2 5 3 4 3 2 5 6 6 7 0

Рис.4.4. Список смежности

 

В данном списке, первая строка матрицы обозначает номер связи графа. Во второй строке указывается номер вершины, откуда указанная связь выходит, а в третьей – в какую вершину графа связь входит.

Кроме списка смежности, связи графа можно представить в таблицах связей. Например, для графа, представленного на Рис.4.2 таблицы связей будут выглядеть следующим образом:

 

Таблица А

   

Таблица В

1 2 5         1 0  
2 3           2 1 4
3 4           3 2 4
4 2 3 5       4 3  
5 6           5 1 4
6 7           6 5 7
7 6           7 6  

 

Рис.4.5. Таблицы связей

Таблица А называется таблицей входных связей, в таблицу В – таблицу выходных связей. В первом столбце таблицы А указываются все вершины графа, а в последующих – номера вершин графа, куда идут связи из соответствующих номеров вершин, указанных в первом столбце таблицы. В таблице В указываются номера вершин графа, откуда идут связи в соответствующие номера вершин, указанные в первом столбце таблицы В.

Модификацией А и В таблиц связи являются NA и NB таблицы связей, отличающихся от А и В таблиц тем, что в них указываются номера входящих и выходящих в заданную вершину связей:

Таблица

   

Таблица

1 2 3         1 1  
2 4           2 2 7
3 5           3 4 6
4 6 7 8       4 5  
5 9           5 3 8
6 11           6 9 10
7 10 12         7 11  

Рис.4.6. Модифицированные таблицы связей

Из указанных способов формализации ХТС сложно выбрать один, т.к. все способы одинаково хорошо выполняют свои функции и могут использоваться без каких либо ограничений для формализации и ввода в компьютер структуры ХТС любой сложности. Основным критерием выбора того или иного способа формализации ХТС является выбранный алгоритм поиска оптимального множества разрываемых связей с целью перевода ХТС из замкнутого в разомкнутый вид.

 

Практическая работа №3

Расчет структуры ХТС

 

Основные методы расчета ХТС.

 

Основной задачей расчета ХТС при заданных параметрах функционирования технологических операторов, является нахождение параметров состояния потоков, связывающих указанные технологические операторы. Методы решения этой задачи обычно разделяют на две группы:интегральные (они еще называются композиционными) и декомпозиционные. В свою очередь, в зависимости от принципов построения моделей, каждый из методов имеет различные способы расчетов.

 

1. Интегральные и декомпозиционные методы расчета ХТС.

 

Суть интегральных методов расчета ХТС заключается в объединении систем уравнений, описывающих работу отдельных аппаратов, в одну большую систему уравнений с дальнейшим решением этой системы. При декомпозиционном методе расчета ХТС представляется в виде отдельных блоков, соответствующих элементам ХТС, и, расчет ХТС сводится к последовательному расчету отдельных блоков. В данном случае размерность каждой отдельной системы уравнений, соответствующей блоку ХТС, относительно невелика. Сравним характеристики интегрального и декомпозиционного методов расчета ХТС:

Как было указано выше, суть интегрального метода заключается в объединении систем уравнений, описывающих работу отдельных аппаратов, в одну большую систему уравнений с дальнейшим решением этой системы. Таким образом, линейные уравнения материального и теплового балансов объединяются с нелинейными уравнениями равновесия химических реакций, дифференциальными линейными и нелинейными уравнениями, уравнениями гидродинамики в частных производных и т.д. в единую "большую" систему уравнений, например, в общем виде:

Данная система уравнений содержит множество уравнений различного типа от линейных до дифференциальных уравнений в частных производных. Такие системы уравнений называютсясмешанными и требуют специальных математических методов для своего решения. Более того, в зависимости от типа уравнений (сложность которых определяется типом модулей), методы решения системы уравнений могут иметь чисто математические ограничения и требовать специального представления задачи. Это приведет к тому, что для конкретной ХТС должна составляется уникальная система уравнений. В связи со сложностью, система уравнений может быть трудноразрешима, и требовать применения специальных математических методов. Следовательно, перед использованием интегрального метода необходимо с математической точки зрения предварительно проанализировать математические зависимости, лежащие в основе модулей ХТС.

Таким образом, для использования интегрального метода проектировщику необходимо иметь достаточно серьезную математическую подготовку и специальные компьютерные программы для решения смешанных систем уравнений (линейных, нелинейных, дифференциальных, в частных производных и др.). Однако даже в этом случае, с целью оперативного получения результатов расчета, интегральный способ расчета можно рекомендовать только для простых ХТС или для ХТС, где необходимо рассчитать только материальные балансы без учета кинетики, термодинамики и т.д. (т.е. решить линейную систему уравнений).

Суть декомпозиционного метода расчета заключается в том, что ХТС представляется в виде отдельных блоков, соответствующих элементам ХТС. Расчет ХТС сводится к последовательному расчету отдельных блоков. В этом случае, при расчете отдельного модуля требуется рассчитать только ограниченное количество уравнений, соответствующих конкретному модулю, т.е. выполнить проверочный расчет конкретного процесса. Следует отметить, что при наличии ограниченного количества возможных модулей ХТС, их алгоритмы расчета давно разработаны и приведены в специальной литературе и в виде компьютерных программ (данные алгоритмы также преподавались в курсе "Моделирование ХТП"). Именно поэтому, вследствие своей универсальности, наибольшее распространение, как при расчете сложных, так и простых ХТС, получил декомпозиционный способ расчета.

Как известно, большинство ХТС имеет рециркуляционные соединения, образующие замкнутую ХТС, непосредственный расчет которой с помощью декомпомпозиционного принципа невозможен. Для решения таких систем их структуру сначала необходимо привести к разомкнутому виду, и, только затем производить расчет с использованием декомпозиционногоспособа расчета. Однако, не смотря на то, что теория и алгоритмы анализа структуры ХТС с целью определения оптимального множества разрываемых связей с целью перевода структуры из замкнутого к разомкнутому виду, и нахождения оптимальной последовательности расчета ХТС, достаточно хорошо разработаны, каждая ХТС сама по себе уникальна. В связи с этим, в конкретном случае могут возникнуть проблемы нахождения оптимального множества разрываемых связей и оптимальной последовательности расчета декомпозиционным способом.

Существуют разновидности декомпозиционного способа расчета замкнутых ХТС, наиболее простым из которых является итерационный способ расчета. Рассмотрим итерационный способ расчета замкнутых ХТС на примере простейшей схемы, представленной на Рис.4.1.

Рис.4.1. Иллюстрация итерационного способа расчета ХТС

Как видно на Рис.4.1а, простейшая замкнутая ХТС состоит из двух модулей (А и В), связанных четырьмя технологическими связями, из которых связь 4 является рециркуляционной. Исходя из исходной задачи расчета ХТС, исходными данными для расчета указанной ХТС будут параметры функционирования элементов А и В, а также параметры входящего в ХТС потока номер 1. Однако, провести расчет модуля А с целью получения параметров потока 2невозможно, т.к. неизвестны параметры потока 4. Расчет модуля В произвести также невозможно, т.к. неизвестен поток 2, входящий в этот модуль. Таким образом,непосредственное применение декомпозиционного способа расчета этой замкнутой ХТС невозможно.

Для того чтобы декомпозиционный способ можно было применить, необходимо привести ХТС из замкнутого вида к разомкнутому. Для этого, в случае указанной ХТС, можно "разорвать" любой поток, входящий в рецикл, т.е. поток 2 или 4. В случае разрыва потока 4 (см.Рис.4.1б), выходящего из модуля В и входящего в модуль А, образуется новый входящий в ХТС и в модуль А поток 4'. В связи с тем, что деление потока на 4 и 4' является условным (применяемым только для цели перевода структуры ХТС из замкнутого к разомкнутому виду), то при применении итерационного способа расчета, в место разрыва помещается дополнительный модуль – итерационный блок (ИБ) (см.Рис.4.1в). В этом случае, исходя из исходной задачи расчета ХТС, исходными данными для расчета указанной ХТС будут являться параметры функционирования элементов А и В, а также параметры входящих потоков 1 и 4'. Первоначальные параметры потока 4' могут определяться с применением какого-либо алгоритма расчета и на основании заданных исходных данных.

С указанным набором исходных данных появляется возможность выполнить ПЕРВЫЙ расчет ХТС, т.е. определить параметры потока 2, зная которые рассчитать параметры потоков 3 и 4. В данном случае, параметры потока 4 будут отличаться от параметров потока 4', поэтому, итерационный блок, проанализировав оба набора данных (потоков 4 и 4'), рассчитает суммарную погрешность и присвоит новые значения параметров потока 4'. Так как новые значения потока 4' будут формироваться итерационным блоком с учетом расчетных параметров потока 4, то при выполнении ВТОРОГО расчета ХТС, суммарная погрешность будет меньше, чем при первом расчете. Далее, циклические расчеты (итерации) проводятся до тех пор, пока значения суммарной погрешности не будут ниже требуемой точности расчета.

Итерационный метод расчета ХТС обычно применяется для расчета относительно простых ХТС, т.к. применение данного метода для сложных ХТС является не достаточно эффективным, т.к. предусматривает последовательные приближения искомых параметров потоков. В связи с тем, что элементы ХТС, исходя из их физико-химической природы, могут функционировать лишь в заданных интервалах изменения параметров, применение итерационного метода иногда может быть невозможно, т.к. в процессе сходимости этого математического метода, значения технологических параметров могут выйти за пределы функционирования элементов ХТС. При расчете ХТС, имеющей несколько разрываемых потоков (наличие нескольких рециклов), применение итерационного метода вообще может быть достаточно проблематично, т.к. вследствие наличия технологических связей, итерационные процессы будут взаимосвязаны, что негативно повлияет на достижение решения для всей системы.

При расчете сложных ХТС, имеющих несколько разрываемых потоков, обычно применяются методы многомерной минимизации суммарной погрешности, описанные в специальной литературе (например /9/). Суть этих методов заключается в том, что в отличие от итерационного метода, искомые значения параметров потоков рассчитываются при проведении расчета, с помощью специальных математических методов с ограничениями, наличие которых не позволяет выйти за пределы функционирования технологических операторов (в процессе нахождения решения), что позволяет достичь сходимости намного быстрее и надежнее.

Как было указано выше, рецикл можно привести из замкнутого вида к разомкнутому виду путем разрыва одной из технологических связей, входящих в рецикл. На Рис.4.1г представлен вариант разрыва потока 2. В этом случае, имея начальные приближения параметров потока 2', сначала будет рассчитываться модуль В с определением параметров потоков 3 и 4, а затем модуль А с определением параметров потока 2. В отличие от предыдущего варианта, итерации будут проводиться по параметрам потока 2, а не потока 4. Вопросы выбора оптимальных вариантов перевода ХТС из замкнутого к разомкнутому виду будут рассмотрены далее.

Сравнение особенностей интегрального и декомпозиционного методов расчета ХТС представлены в Таблице 4.1.

 

Таблица 4.1.


Дата добавления: 2018-04-15; просмотров: 929; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!