Раздел 2. Изучение основного и вспомогательного оборудования



 

Водоподготовка — обработка воды, поступающей из природного водоисточника, для приведения её качества в соответствие с требованиями технологических потребителей. Может производиться на сооружениях или установках водоподготовки для нужд коммунального хозяйства, практически во всех отраслях промышленности.

Методы водоподготовки:

-удаление твердых частиц, фильтрация;

-умягчение воды;

-обессоливание и опреснение;

-снижение коррозийных свойств воды.

Удаление твердых частиц.

Выполняется с помощью подбора и монтажа фильтров грубой и тонкой очистки.

Умягчение воды.

Содержащиеся в воде труднорастворимые соли кальция и магния при нагревании вызывают образования накипи, что приводит к нарушениям химико-технических процессов. Для устранения требуется провести умягчение воды.

Методы умягчения воды:

-термический способ;

-реагентное умягчение воды катионированием;

-магнитная и радиочастотная обработка воды.

Обессоливание и опреснение.

Для паровых котлов нередко требуется деминерализованная вода, т.е. полностью обессоленная вода. Часто для обессоливания воды используют совместный метод ионного обмена с обратным осмосом. Процесс обессоливания воды ионообменным методом заключается в замене катионов ионами водорода и анионов на ион гидроксила при последовательном фильтровании воды через катионитовый и анионитовый фильтр.

Снижение коррозийных свойств воды.

Кислород и углекислота - важнейшие факторы коррозии. Для снижения данных факторов применяют дозирование в воду реагентов и производят дегазацию.

 

Противоточная технология (Швебебед, Upcore) КТЭЦ-1

Эффект улучшения качества фильтрата и снижения расхода реагентов при противотоке достигается за счет того, что в первую очередь свежим раствором регенерируются наименее загрязненные выходные слои смолы. При этом избыток реагента в этих слоях, обеспечивающий глубину очистки воды, превышает расчетные в несколько раз. Кроме того, по мере продвижения регенерационного раствора в более истощенные слои создается равновесие между концентрацией десорбируемых ионов в растворе и слое, что исключает нежелательные повторные процессы сорбции-десорбции, характерные для параллельнотока.

Использование противотока в одну ступень позволяет получить минимальную остаточную концентрацию катионов жесткости. Причем нарастание последней идет плавно по мере истощения материала загрузки. При параллельнотоке минимальное и сравнительно высокое содержание удаляемых ингредиентов достигается уже при 40–60% истощения материала загрузки и далее резко возрастает.

Для реализации преимуществ противоточного ионирования необходимо обеспечить неподвижность слоя ионита во время рабочего цикла и регенерации, одновременно позволяя ему расширяться в период взрыхления. Нарушение распределения слоев смолы служит причиной серьезного ухудшения качества фильтрата и нивелирование эффекта противоточной технологии.

Исходной водой является озеро Кабан. В связи с этим, необходимо эксплуатировать установку предварительной очистки воды в соответствии с проектным решением – коагуляция в осветлителях, механическая фильтрация на осветлительных фильтрах. При использовании противоточной технологии (Швебебед, Upcore) снижается количество оборудования, удельных расходов реагентов и воды на собственные нужды.

На рассматриваемом предприятии используются фильтры с очисткой воды снизу вверх, а регенерацией сверху вниз. Такой фильтр состоит из корпуса (рис. 3), верхнего и нижнего дренажных устройств. Внутри корпуса находится слой ионита и специального плавающего инертного материала. Высота слоя ионита составляет около 0,9 от высоты рабочей зоны. Толщина слоя инерта должна обеспечивать полное закрытие верхнего дренажа.

Очистку воды производят при ее подаче снизу вверх. При этом слой ионита поднимается вверх и вместе со слоем инерта прижимается к верхнему дренажу. В нижней части фильтра образуется слой псевдоожиженного ионита, который является дополнительным распределителем для воды по сечению фильтра. Этот слой работает с раствором максимальной концентрации и полностью насыщается.

Для стабильной эффективной работы необходимо обеспечить равномерное распределение раствора по сечению фильтра и предотвратить перемешивание загрузки при работе и при остановках. Поэтому скорость раствора может колебаться от 10–20 до максимальной – 40–50 м/ч. При меньшей скорости слой может оседать и перемешиваться. При эксплуатации этих фильтров нежелательны перерывы в подаче раствора.

Регенерация такого фильтра отличается от прямоточной отсутствием операции взрыхляющей отмывки от взвесей.

Рис. 3. Принцип работы системы

а – очистка; б – регенерация; в – отмывка ионита от взвесей и измельченных частиц;

1 – корпус; 2 – верхний дренаж; 3 – слой инерта; 4 – ионит; 5 – нижний дренаж

 

При загрязнении слоя взвесями, обычно нижнего слоя, этот слой выводится из аппарата в специальную безнапорную колонну , где и отмывается. После отмывки он возвращается в аппарат. Одна промывная колонна может быть транспортабельной и обслуживать несколько фильтров.

Наряду с большей эффективностью регенерации ионитов в противотоке преимуществом такой конструкции является существенно большее количество ионита в одном корпусе, что позволяет либо увеличить продолжительность фильтроцикла, либо применять фильтры меньших габаритов.

 

Описание схемы подготовки химобессоленной воды на КТЭЦ -2

Мембранные технологии очистки воды – перспективные технологии очистки. В основу мембранной технологии очистки воды заложен натуральный природный процесс фильтрации воды.

Основной фильтрующий элемент установки - полупроницаемая мембрана. Мембранные методы очистки воды классифицируются по размерам пор мембран в следующей последовательности:

-микрофильтрация воды – размер пор мембраны 0,1-1,0 мкм;

-ультрафильтрация воды - размер пор мембраны 0,01-0,1 мкм;

-нанофильтрация воды - размер пор мембраны 0,001-0,01 мкм;

-обратный осмос – размер пор мембраны 0,0001мкм.

Примеси, размер которых превышает размер пор мембраны, при фильтрации физически не могут проникнуть через мембрану.

В отличие от традиционных методов очистки, требующих больших площадей, многошаговой обработки, мембранные технологии имеют преимущества: высокий уровень автоматизации, позволяющий снизить трудозатраты, повысить культуру производства, компактность оборудования. К недостаткам следует отнести высокую стоимость мембран и короткий срок эксплуатации мембран 5 лет.

Процесс мембранной фильтрации осуществляется в так называемом "тупиковом" режиме, т.е. вся вода, которая поступает на блок проходит через поры мембраны, на поверхности которой остаются все задержанные вещества.

В процессе фильтрации на поверхности мембран накапливаются отложения, вызывающие закупорку пор, что ведет к увеличению трансмембранного давления (разница давлений на входе и выходе) и снижению проницаемости мембран.Удаление отложений осуществляется периодической обратной промывкой фильтроэлементов. Обратная промывка проводится в две стадии: водо-воздушная с расходом осветленной воды 15 м3/ч в течение 2-х минут и водная с расходом осветленной воды 115 м3/ч в течение 2 минут. Показателем вывода воды на промывку является пропущенный объем воды через мембрану (50-80м3), задается в зависимости от качества исходной воды. Большая часть отложений удаляется при обратной промывке мембран осветленной водой, которая подается внутрь полых волокон, т.е. направление потока (по сравнению с процессом фильтрации) меняется на обратное.

С течением времени возникает ситуация, когда проведение периодических безреагентных промывок для восстановления первоначальных параметров будет недостаточно в виду особых свойств отложений и режима работы установки мембранной фильтрации. Для восстановления исходной проницаемости мембран проводится химическая промывка модулей.

Наиболее целесообразно использовать комбинированный метод, в две стадии – на первой стадии основную часть солей удаляют при помощи технологии обратного осмоса, на второй – финишная очистка методом ионного обмена с противоточной регенерацией.

Дополнительное преимущество обратного осмоса перед ионным обменом состоит в комплексном удалении загрязнений, в том числе органических, которые негативно влияют на ионообменные смолы и работу оборудования.

Осветленная вода после БМФ направляется в баки осветленной воды V=400м3 (2шт.). С баков осветленной воды БОВ №1,2 вода подается на установку обратного осмоса для получения частично-обессоленной воды.

Установка обратного осмоса (размер пор мембраны 0,0001мкм) на стадии частичного обессоливания воды предназначена для эффективного удаления растворенных примесей. Установка обратного осмоса состоит из 6 параллельно включенных модулей ˝Шарья П-70 00˝. Производительность одного модуля 60,0 м3/час.

Фильтрующие модули работают в режиме тангенциальной фильтрации. Осветленная вода в блоке обратного осмоса под давлением разделяется на два потока: чистого пермеата (60т/ч) и концентрата (20т/ч).

Для борьбы с отложением на мембранах обратного осмоса малорастворимых солей кальция, магния, органических веществ в исходную воду перед блоком вводятся специальные добавки - антискалянты. В качестве антискалянта используется ингибитор отложения солей «Акварезалт – 1030».

Для защиты мембран перед каждым блоком обратного осмоса установлены фильтры тонкой очистки (3 шт. перед каждым БОО), в каждом фильтре установлено 19 фильтрующих элемента. При перепаде давления на входе и выходе воды с фильтра фильтрующие элементы подлежат замене.

В процессе работы обратного осмоса на поверхности мембран обратноосмотических элементов постепенно накапливаются загрязнения. При увеличении рабочего давления на 10% от первоначального, вызванного отложением на поверхности обратноосмотических мембран малорастворимых солей, осуществляют химическую промывку. Для промывки используют блок химической промывки (БХП). В качестве растворов используют слабые растворы кислот, щелочей и моющих средств (типа Трилон Б).

Обессоливание воды путем ионного обмена заключается в последовательном фильтровании через Н-катионитный, а затем ОН-фильтры фильтры.

Эффективность обессоливания, сокращение удельных расходов реагентов, объема стоков достигается за счет применения современной противоточной технологии ионирования. При этом высокое качество очистки воды до требуемых показателей качества обессоленной воды обеспечивается одной ступенью ионирования.

Обрабатываемая вода вводится в фильтр через верхнее дренажно-распределительное устройство, после чего она проходит сквозь слой инертного материала, затем через активную смолу и выходит через нижнее дренажно-распределительное устройство.

Контроль качества воды после катионитного фильтра выполняется автоматически при помощи анализатора ионов натрия, установленного на стойке химического контроля на выходе из каждого фильтра.

Контроль качества воды после ОН- фильтра выполняется автоматически при помощи 4-х канального анализатора содержания кремниевой кислоты и кондуктометра, установленного на стойке химического контроля. Отбор проб осуществляется на выходе из каждого фильтра.

После пропуска заданного количества воды или при повышенном содержании ионов натрия в обработанной воде, Н-фильтр выводится автоматически на регенерацию. Показателем вывода на регенерацию ОН-фильтра является заданное количество пропущенной через фильтр воды, повышенное содержание эл. проводимости и кремнекислоты.

Общая продолжительность регенерации Н-фильтра составляет 1,72 ч, ОН-фильтра – 1,72 ч. На одну регенерацию расход 100 %-ной серной кислоты составит 0,471 тн; 100 %-ного едкого натра – 0, 458 тн.

После очистки на Н-ОН фильтрах обессоленная вода поступает в существующие баки обессоленной воды БЗК №1,2 (V=2000м3). С баков БЗК №1,2 (V=2000м3) насосами подачи обессоленной воды вода подается в распределительный коллектор турбинного цеха.

Осветленная вода из баков БОВ№1,2 при помощи насосов подается на декарбонизаторы. В напорную линию насосов дозируется серная кислота при помощи блока дозирования кислоты (БДСК). Необходимое количество кислоты контролируется при помощи pH-метра, установленного на трубопроводе. Доза кислоты зависит от индекса карбоатного. ПриИк= 4 (мг-экв/дм3)2 доза кислоты составляет 5 г/т, при Ик=3 (мг-экв/дм3)2 доза кислоты увеличивается до 75 г/т. Как известно индекс карбонатный завистит от работающего оборудования, температуры нагрева, рН подпиточной воды.

Декарбонизованная вода собирается в баках декарбонизованной воды БОВ №3,4 и далее насосами подается в существующие деаэраторы теплосети, затем деаэрированная вода собирается в баках запаса деаэрированной воды БЗДВ №1,2, откуда насосами подпитки теплосети подается в теплофикационную сеть. Так как рН обработанной воды после деаэраторов составляет 6,5-7,5 необходимо дозировать щелочь перед насосами подпитки теплосети.

Предварительная очистка воды на Казанской ТЭЦ-2 является общей для подготовки подпиточной воды установки подпитки теплосети и производства обессоленной воды для подпитки энергетических котлов.

Проект реализовывался в период с 2010 по 2011 гг. Проектная производительность составляет 300 м3/ч по обессоленной воде и 300 м3/ч по подпиточной воде тепловых сетей по схеме: микрофильтрация, обратный осмос и противоточное Н-ОНионирование.

 


Дата добавления: 2018-04-15; просмотров: 379; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!