Основные разделы курса «Механика грунтов»

Задачи курса «Механика грунтов»

Многообразие проблем, рассматриваемых в механике грунтов, можно свести к следующим основным задачам:

1. Исследование физико-механических свойств структурно-неустойчивых грунтов, т.е. просадочных, пучинистых, набухающих заторфованных и т.д.

2. Определение напряжений и деформаций грунтовых массивов от действия собственного веса и в процессе нагружения внешними силами.

3. Определение прочности грунтов и устойчивости оснований и сооружений.

4. Исследование реологических свойств грунтов и изменения напряженно-деформированного состояния во времени.

5. Исследование работы грунтовых массивов при динамических воздействиях.

Таким образом, механика грунтов занимается исследованием физико-механических свойств грунтов и разработкой математических методов описания поведения грунтов и связанных с ними явлений.

Место механики грунтов среди других разделов механики и связь её с другими дисциплинами

Механика грунтов (носящая более теоретический характер) органически связана как с ранее изучаемыми дисциплинами, так и последующими (см. схему на ниже приведённом рис.). К таким дисциплинам относится предмет "Основания и фундаменты", который носит в основном прикладной характер и изучается позже.

Схема изучения предмета и его связи с другими дисциплинами.

МЕСТО МЕХНИКА ГРУНТОВ ставим словоГеотехника

Механика грунтов является общенаучной дисциплиной для студентов строительных специальностей. Объектом изучения механики грунтов являются грунты естественного, реже искусственного (техногенного) происхождения. Возводимые сооружения передают нагрузки на основания, состоящие из каких-либо грунтов. Состав, строение и свойства грунтов разных строительных площадок могут существенно различаться, требуя специального изучения.

Поведение грунтов под нагрузками сопровождается сложными процессами, т.к. нарушается их начальное состояние, и в грунтах возникают новые процессы, осложняющие эксплуатацию сооружений. Ошибочная оценка грунтов основания часто бывает причиной аварий сооружений, поэтому необходимо не только правильно оценить прочностные и деформационные свойства грунтов, но и в ряде случаев разработать способы улучшения строительных свойств грунтов основания.

В дисциплине «Механика грунтов» рассматриваются вопросы напряженного состояния, деформируемости, прочности и устойчивости грунтов, а также способы их обеспечения. Для успешного освоения курса необходимо знание ряда дисциплин, таких как инженерная геология и гидрогеология, математика, физика, сопротивление материалов, теория упругости, пластичности, строительная механика и др.

Основными задачами дисциплины являются:

- объективная оценка физико-механических свойств грунтов;

- определение напряженно-деформированного состояния грунтового массива от собственного веса, нагрузки от сооружений и природных факторов;

- оценка прочности и устойчивости грунтовых массивов против оползания, разрушения и давления на ограждающие конструкции;

- расчет оснований фундаментов по предельным состояниям.

Учебное пособие составлено в соответствии с программой «Механика грунтов» и предназначено для студентов специальностей «Промышленное и гражданское строительство», «Гражданское строительство и хозяйство», «Проектирование зданий», «Тепловодогазоснабжение и вентиляция», «ПСК», «Автомобильные дороги и аэродромы», «Мосты и транспортные тоннели».

 

 

Основные разделы курса «Механика грунтов»

Основные понятия курса. Цели и задачи курса. Состав, строение, состояние и физические свойства грунтов
Основные понятия курса.
Задачи курса механики грунтов.
Состав и строение грунтов.
Структура и текстура грунта, структурная прочность и связи в грунте.
Физические свойства грунтов.
Строительная классификация грунтов.
Связь физических и механических характеристик грунтов.
Понятие об условном расчетном сопротивлении.
Механические свойства грунтов
Деформируемость грунтов
Компрессионные испытания, получение и анализ компрессионных кривых.
Деформационные характеристики грунтов.
Принцип линейной деформируемости.
Водопроницаемость грунтов.
Закон ламинарной фильтрации.
Закономерности фильтрации воды в сыпучих и связных грунтах.
Прочность грунтов.
Трение и сцепление в грунтах.
Сопротивление грунтов при одноплоскостном срезе.
Сопротивление сдвигу при сложном напряженном состоянии. Теория прочности Кулона-Мора.
Прочность грунтов в неконсолидированном состоянии
Полевые методы определения параметров механических свойств грунтов.
Определение напряжений в массивах грунтов.
Определение контактных напряжений по подошве сооружения.
Классификация фундаментов и сооружений по жесткости.
Модель местных упругих деформаций и упругого полупространства
Влияние жесткости фундаментов на распределение контактных напряжений.
Распределение напряжений в грунтовых основаниях от собственного веса грунта.
Определение напряжений в грунтовом массиве от действия местной нагрузки на его поверхности.
Задача о действии вертикальной сосредоточенной силы.
Плоская задача. Действие равномерно распределенной нагрузки.
Пространственная задача. Действие равномерно распределенной нагрузки.
Метод угловых точек.
Влияние формы и площади фундамента в плане.
Прочность и устойчивость грунтовых массивов. Давление грунтов на ограждения.
Критические нагрузки на грунты основания. Фазы напряженного состояния грунтовых оснований
Начальная критическая нагрузка
4.1.2. Расчетное сопротивление и расчетное давление
Предельная критическая нагрузка
Практические способы расчета несущей способности и устойчивости оснований.
Устойчивость откосов и склонов
Понятие о коэффициенте запаса устойчивости откосов и склонов.
Простейшие методы расчетов устойчивости
Устойчивость откосов в идеально сыпучих грунтах (ϕ ≠0; с=0)
Учет влияния фильтрационных сил
Устойчивость вертикального откоса в идеально связных грунтах (ϕ=0; с≠0)
Устойчивость вертикального откоса в грунтах, обладающих трением и сцеплением (ϕ ≠0; с≠0)
Инженерные методы расчёта устойчивости откосов и склонов
Метод круглоцилиндрических поверхностей скольжения
Мероприятия по повышению устойчивости откосов и склонов
Понятия о взаимодействии грунтов с ограждающими конструкциями (давление покоя, активное и пассивное давление).
Определение активного давления на вертикальную грань стенки для сыпучего грунта и связного грунта, учёт пригрузки на поверхности засыпки.
4.6.2. Учёт пригрузки на поверхности засыпки.
Деформации грунтов и расчет осадок оснований сооружений .
Теоретические основы расчета стабилизированных деформаций оснований.
Постановка задачи.
Определение осадок линейно-деформируемого полупространства или слоя грунта ограниченной мощности.
Основные предпосылки приближенных методов расчёта осадок.
Практические методы расчета конечных деформаций оснований фкндаментов.
Расчёт осадок методом послойного суммирования.
Расчет осадок методом эквивалентного слоя
Практические методы расчёта осадок оснований фундаментов во времени.

 

48. Графический метод определения давления грунта на жесткую подпорную стену.

Рассмотрим графический метод определения давления грунтов на подпорные стенки, предложенный Ш. Кулоном и базирующийся на допущении плоских поверхностей скольжения. Этот метод основан на построении силовых треугольников и справедлив для общего случая засыпки грунта за подпорной стенкой, любой ее формы и любого наклона задней грани стенки.

Так как суммарное давление на подпорную стенку равно площади треугольной эпюры боковых давлений, то удельное давление у нижнего ребра задней грани стенки

где Н — длина задней грани подпорной стенки.

Вопрос 21

 Аналитический метод определения давления грунтана подпорную стенку

Рассмотрим условие предельного равновесия элементарной призмы, вырезанной из призмы обрушения вблизи задней грани подпорной стенки при горизонтальной поверхности грунта и вертикальной задней грани подпорной стенки, при с = 0 (рис. 5.10). На горизонтальную и вертикальную площадки этой призмы при трении о стенку, равном нулю, будут действовать главные напряжения и .
Из условия предельного равновесия на глубине z

; (5.16)

,(5.17)

здесь горизонтальное давление грунта, величина которого прямо пропорциональна глубине z, т.е. давление грунта на стенку будет распределяться по закону треугольника с ординатами = 0 на поверхности грунта и у подошвы стенки. На глубине, равной высоте стенки Н, давление . Тогда согласно условию (5.17) боковое давление на глубине Н

, (5.18)

а активное давление характеризуется площадью эпюры и равно

. (5.19)

Равнодействующая этого давления приложена на высоте от подошвы стенки.

Учет сцепления грунта. Для связного грунта, обладающего внутренним трением и сцеплением, условие предельного равновесия может быть представлено в виде

. (5.20)

Сопоставляя (5.19) с (5.20), отметим, что выражение (5.19) характеризует давление сыпучего грунта без учета сцепления, а (5.20) показывает, насколько снижается интенсивность давления вследствие того, что грунт обладает сцеплением. Тогда это выражение можно представить в виде

, (5.21)

где , . (5.22)

Таким образом, сцепление грунта уменьшает боковое давление грунта на стенку на величину по всей высоте. Напомним, что связный грунт способен держать вертикальный откос высотой , определяемой по формуле

, (5.23)

поэтому до глубины от свободной поверхности засыпки связный грунт не будет оказывать давления на стенку. Полное активное давление связного грунта определяется как площадь треугольной эпюры со сторонами и (рис. 5.11).

. (5.24)

Пассивное сопротивление связных грунтов определяется аналогично, с учетом того, что в формулах (5.20) и (5.22) знак минус в скобках аргумента тангенса изменится на плюс.

. (5.25)

Связные грунты (j¹0 и с¹0). Определим давление связного грунта на вертикальную, абсолютно гладкую подпорную стенку при горизонтальной засыпке (рис.4.25). Действие сил сцепления заменяем всесторонним равномерным давлением связанности . В этом случае горизонтальное напряжения

. (4.58)

Учитывая, что и , получим

 
 


. (4.59)

 

После преобразований формулу (4.59) можно записать так:

(4.60)

или

, (4.61)

где

, .

Из приведенных данных видно, что сцепление грунта уменьшает боковое давление грунта на стенки на величину s по всей высоте. На некоторой глубине hс суммарное давление будет равно нулю. Найдя из условия s2=0 глубину hс, определим полное активное давление связного грунта на подпорную стенку как площадь треугольника со сторонами s2 и H-hс:

. (4.62)

При h<H активное давление можно определить по формуле

, (4.63)

а пассивное давление

. (4.64)

При учете сил трения, слоистости грунтов напластования, податливости стенки форма эпюр давления имеет сложный вид, направление равнодействующей будет наклонным. Так, например, на рис.4.26 показано направление равнодействующей активного давления при учете сил трения грунта о заднюю стенку.

 

Рис.4.26. Эпюры давления грунта на подпорные стенки с учетом сил трения для сыпучего (а) и связного (б) грунтов

(j0 – угол трения грунта о стенку)

 

Вопрос 23

При проектировании расчет основания здания или сооружения производится с целью нахождения наиболее экономичного решения по выбору размеров фундаментов, удовлетворяющих двум положениям: ограничениям, накладываемым на осадки проектируемого здания или сооружения, и устойчивости основания.

Расчет оснований всех зданий и сооружений в соответствии с требованиями СНиП П-Б.1-62* [33] производится по второму предельному состоянию (по деформации), если основание сложено несколькими грунтами (породами).

По первому предельному состоянию (по несущей способности, т. е. устойчивости) расчет ведется в случаях, когда: на основание передаются горизонтальные нагрузки в основном сочетании нагрузок (подпорные стенки и др.); основания ограничены вниз идущими откосами; фундаменты работают на выдергивание; основания сложены скальными породами.

Главной задачей расчета оснований подавляющего большинства зданий и сооружений является проверка выполнения условия, согласно которому деформации, определяемые по расчету, не должны превышать предельных величин, ограниченных Для обычных типов зданий нормами. Предельные величины деформаций специальных сооружений, а также зданий с особыми несущими конструкциями назначаются исходя из обеспечения нормальных условий их эксплуатации.

Обычно придерживаются следующего порядка расчета основания по деформации:

1. Производится подсчет нагрузок, действующих на обрезы фундаментов здания или сооружения.

2. Оцениваются инженерно-геологические условия площадки строительства, устанавливаются необходимые нормативные и расчетные характеристики грунта.

3. Намечаются возможные варианты глубины заложения и типа фундаментов (сплошная плита, ленточный и т. п.).

4. Устанавливается группа фундаментов, при расчете основания которых принимается окончательное решение по выбору типа основания (естественное, искусственное), типа фундамента (отдельный, ленточный, сплошной, свайный и т. п.), глубины их заложения.

В такую группу включают наиболее нагруженные фундаменты и фундаменты, которые могут получить наибольшую неравномерность осадки (прогиб, перекос, крен).

5. Рассчитывается ширина фундамента (сначала наиболее нагруженного) с одновременным определением величины нормативного давления на грунт, при этом задаются соотношением сторон подошвы. Для III и IV классов сооружений величина нормативного давления устанавливается по табл. 14 (СНиП И-Б.1-62*).

Размеры подошвы вычисляются в зависимости от величины нормативного давления.

6. Назначаются размеры подошвы фундамента по произведенному расчету с учетом модульной системы конструкций фундаментов.

7. Производится проверка средней величины напряжений по подошве фундамента и величины краевых напряжений (при внецентренном нагружении), затем эти величины сравниваются с нормативным давлением на грунт при данной ширине фундамента.

8. Расчетом определяется осадка фундамента и сравнивается с предельно допустимым значением.

9. В тех случаях, когда найденная осадка больше предельного ее значения, изменяют размеры фундамента (глубину заложения, соотношение сторон и ширину подошвы), добиваясь выполнения условия расчета фундамента по деформации. Если такое решение оказывается нерациональным, принимают другой тип фундаментов или основания и повторно производят расчет.

10. Расчетом определяются осадка и неравномерности осадок фундаментов, при этом учитывается загружение соседних фундаментов и в некоторых случаях соседних площадей (нагрузка на пол по грунту, от подсыпки территории и т. п.).

11. Если найденные значения осадок и их неравномерности окажутся больше предельных величин, то, изменяя намеченное решение, добиваются выполнения условия расчета фундаментов по деформации (см. п. 9).

12. Расчет всех остальных фундаментов здания или сооружения производят в указанной выше последовательности, за исключением пунктов, решение по которым является общим. В некоторых случаях производят проверку устойчивости оснований (производят расчет по несущей способности).

Расчеты, выполняемые с целью не допустить исчерпания несущей способности оснований и фундаментов, называют расчетами их на прочность и устойчивость. Основания и фундаменты могут обладать достаточной несущей способностью, но под воздействием нагрузок получать значительные перемещения, недопустимые по условиям нормальной эксплуатации сооружений.

Вопрос 24

Фундаменты и их основания - ответственные элементы соору­жения, от качества и надежности которых в большой степени зави­сят долговечность и безопасность его эксплуатации.

Элементы фундамента:

подошва фундамента — поверхность фундамента, соприкасающаяся с грунтом основания;

обрез фундамента — поверхность фундамента, верхняя плоскость, на которой располагаются надземные части здания;

тело фундамента.

Глубина заложения фундамента — расстояние от планировочной планировки до уровня подошвы фундамента.

Глубина заложения должна соответствовать глубине заложения прочного слоя основания.

Глубина заложения фундамента зависит

назначения здания (от нагрузки);

наличия в здании подвала;

глубины промерзания грунта. Подошва фундамента должна располагаться ниже глубины промерзания не менее 20 см;

от уровня грунтовых вод;

вида грунта основания.

Классификация фундаментов

По конструкции:

ленточные — непрерывной лентой под стенами здания;

столбчатые — ввиде отдельных опор под колонны каркасных зданий;

сплошные — массивная плита под всем зданием;

свайные — ввиде стрежней, погруженных в грунт.

По материалу:

из природного камня (бутовые);

бутобетон;

бетон;

железобетон.

По форме:

— Оптимальной формой поперечного сечения жестких фундаментов является трапеция, где обычно угол распределения давления принимают для бута и бутобетона 27—33°, бетона — 45°. Эти фундаменты с учетов потребностей расчетной ширины подошвы могут быть прямоугольными и ступенчатыми. Блоки-подушки выполняют прямоугольной или трапециевидной формы;

По способу возведения:

- сборные и монолитные;

По характеру статической работы

— Жесткие, работающие только на сжатие, и гибкие, конструкции, которых рассчита­ны на восприятие растягивающих усилий. К первому виду относят все фундаменты, кроме железобетонных. Гибкие железобетонные фундаменты способны воспринимать рас­тягивающие усилия;

По глубине заложения:

— Мелкого (до 5 м) и глубокого (более 5 м) заложения. Минимальную глубину заложения фундаментов для отапливаемых зданий принимают под наружные стены не менее глубины промерзания плюс 100—200 мм и не менее 0,7 м; под внутренние стены — не менее 0,5 м.

Основания под фундаментами бывают двух видов

— естественные к искусственные.

К - естественным относятся основая, грунты которых расположены под подошвой фундамента в их естественном залегании. Если грунгы под подошвой фундамента слабые и основанием служить не могут, то в этих случаях устраиваются искусственные основания.

- К искусственным основаниям относятся:
а) подушки (песчаные или каменные), заменяющие слабые грунты, расположенные непосредственно под подошвой фундамента и распределяющие нагрузку от веса здания на нижележащие грунты, уменьшающие таким образом единичное давление на слабый грунт;
б)искусственное уплотнение (упрочение) грунта основания путем втрамбовывания в него щебня, забивки коротких бетонных или грунтовых свай, цементации;
в) свайные основания и опускные колодцы, передающие нагрузку от веса здания на более прочные грунты, залегающие на большой глубине от поверхности земли.
Искусственные основания чаще всего применяются в промышленном строительстве.

Требования к фундаментам

прочность;

водостойкость;

долговечность;

индустриальность;

экономичность.

Вопрос 25

Вопрос 26

Внецентренное нагружение наиболее характерно для фундаментов каркасных производственных зданий с крановыми нагрузками, подпорных стенок, высоких сооружений, воспринимающих значительные ветровые нагрузки (дымовые трубы и проч.) и т.д. Действующие на основание нагрузки всегда можно привести к сочетанию вертикальной нагрузки Nz и моментов Mx, My относительно осей х и у.

Продолжение

Второй этап представляет собой расчет характеристик самого фундамента. В частности, расчет площади несущей конструкции должен стать первым шагом в рамках алгоритма, аналогичного расчету площади центрального нагруженного фундамента, которая впоследствии будет скорректирована с учетом фактического характера нагрузок на конструкцию.

Схема не симметричного свайного фундамента с определением смещенного центра тяжести.

На этом этапе потребуется расчет эпюры давления грунта, которая представляют собой количественные характеристики степени интенсивности воздействия, оказываемого грунтом на фундаментальную конструкцию. На практике эпюра давления грунта может оказаться как однозначной, так и двузначной. Однако следует иметь в виду, что специалисты рекомендуют стремиться к тому, чтобы эпюра была однозначной, поскольку в этом случае вероятность отрыва подошвы несущей строительной конструкции от грунта оказывается более низкой.

Необходимо осуществить расчет характеристик давления на подошву рассчитываемого фундамента на предмет соотношения между максимальной и минимальной нагрузкой, предусмотренной в отношении указанной несущей строительной конструкции разработанным проектом. Так, одним из соотношений, которые надлежит принять во внимание, является частное от деления минимального и максимального значения напряжения, фиксируемого под подошвой внецентренно нагруженной фундаментальной конструкции.

Согласно действующим нормам, соотношение между указанными показателями зависит не только от характеристик здания, которое планируется к возведению на рассматриваемой строительной площадке, и воздействия природных факторов на рассчитываемую конструкцию, но и от наличия строительной техники на площадке.

Эпюры давлений под подошвой фундамента при действии внецентренной нагрузки.

Так, если в процессе строительства планируется организация крановой нагрузки на внецентренно нагруженную фундаментальную конструкцию, частное от деления минимального и максимального значения напряжения, фиксируемого под ее подошвой, должно быть не менее 0,25. Допускается также расчет значения, равного указанной величине. Если же воздействия строительной техники на рассматриваемый фундамент в процессе строительства не предусмотрено, достаточно того, чтобы указанное соотношение было больше 0. По аналогии с предыдущей рассмотренной ситуацией, допускается расчет значения, равного указанной величине.

Отрыв подошвы фундамента от грунта, в котором она устроена, чреват самыми неблагоприятными последствиями. При этом их перечень не исчерпывается снижением устойчивости здания, связанного непосредственно с самим фактом отсутствия полного прилегания 2-х рассматриваемых плоскостей. Дело в том, что наличие зазора между поверхностью несущей строительной конструкции и прилегающим грунтом обеспечивает возможность попадания воды в имеющуюся полость, что, в свою очередь, может повлечь за собой общее нарушение первоначальных свойств фундамента.

Расчет внецентренно нагруженного фундамента требует использования нескольких ключевых формул, которые демонстрируют соотношение между показателями, использующимися для расчета этой несущей строительной конструкции.Так, одной из основных формул, используемых для того, чтобы осуществить расчет площади поверхности фундамента, является следующая: Аф=N/(R-Byd), где N – это внешняя нагрузка на площадь поверхности, соответствующая величине коэффициента надежности по нагрузке при y=1, R – расчетное значение сопротивления грунта основания конструкции, В – коэффициент, который учитывает меньшую величину удельного веса почвы, лежащей на обрезах конструкции, по сравнению с удельным весом строительного материала у, использованного при закладке фундамента, d – глубина заложения фундамента. На практике при осуществлении расчетов в рамках проведения проектных работ Ву обыкновенно принимают равным 20 кН/м³.

Формула для расчета площади фундамента.

Вторая формула служит для того, чтобы осуществить расчет величины расчетного сопротивления грунта R, которое определяется следующим образом: R=(y1*y2/k)*(M°kªby+M¹d‚y´+(M¹-1)d„y´+M²c). В указанной формуле y1 и y2 представляют собой коэффициенты условий взаимодействия грунтового основания и самого строения с фундаментом, k – коэффициент, показывающий, каким образом получены параметры, характеризующие образцы грунта. Если эти параметры были получены по данным испытаний, коэффициент k принимается равным 1; если же они были получены по косвенным данным – 1,1.

M°, M¹, M² – коэффициенты, не имеющие определенной размерности, которые зависят от угла внутреннего трения. kª – коэффициент, зависящий от значения параметра b, характеризующего меньшую сторону фундамента. Если значение b составляет менее 10 м, коэффициент kª принимает значение 1, если b больше или равно 10 м, kª будет рассчитываться как a/b+0,2. y представляет собой среднее значение расчетного веса грунта, который залегает ниже подошвы фундамента, y´ – среднее значение расчетного веса грунта, который залегает выше фундаментальной конструкци.

Схема бурения скважины под фундамент.

Параметр d‚ отражает глубину заложения фундамента в случае, если рассматриваемое здание не имеет подвала, а d„ – глубину подвала в случае его наличия. Наконец, показатель с представляет собой один из параметров, характеризующих грунт: в частности, он отражает расчетное удельное сцепление грунта, который залегает непосредственно под подошвой фундамента.

Третья важная формула определяет величину давления под подошвой внецентренно нагруженного фундамента: pmax=N/Aф+M/W, pmin=N/Aф-M/W. В указанной формуле параметр N отражает вертикальную силу, воздействующую на фундамент, Aф представляет собой площадь поверхности указанной несущей строительной конструкции, М – момент, присутствующий на поверхности конструкции, а W – момент, отражающий величину сопротивления на поверхности фундамента.

Наконец, проектирование внецентренно нагруженного фундамента требует учитывать, что необходимо не просто осуществить расчет необходимых показателей, но и соблюсти требуемое соотношение между ними. В частности, такие соотношения устанавливаются формулами pmax<1,2R, pmin>0. Кроме того, допускается наличие соотношения, при котором pmax=1,2R.

 

 

Вопрос 28

Виды свай и свайных фундаментов. Соединение трубобетонных свай

 

Различают сваи забивные, или заводского изготовления, и набивные, которые устраивают непосредственно на строитель­ной площадке в полостях пробуренных скважин заданного диа­метра. Сваи-стойки, прорезая слои слабых грунтов, передают нагрузку своим острием на глубоко расположенный прочный грунт, а висячие сваи воспринимают ее преимущественно боковой поверхностью за счет сил трения по всей высоте сваи. Практически чаще всего имеет место сочетание этих двух состояний работы сваи. В соответствии с направлением погружения конструкций в грунт различают сваи вертикальные и наклонные. Анкерные и корневидные сваи применяют в тех случаях, когда фундамент предназначается для восприятия значительных горизонтальных и выдергивающих усилий. Расположение свай в плане может быть: одиночным - под отдельно стоящие опоры; ленточным в несколько рядов - под стены зданий; кустовым - под тяжелые колонны и опоры; в виде сплошного свайного поля - под специальные высотные соору­жения (дымовые трубы, доменные печи и т. п.). В табл. 1 приведена классификация забивных свай, свайных фундаментов и ростверков в программированной форме с целью использования конструктивно-технологических характеристик этих типов свай в учебном процессе при выборе и оптимизации процессов производства свайных работ с применением ЭВМ. Из забивных свай наиболее ударостойкими являются железо­бетонные предварительно напряженные сваи, верхняя, часть которых дополнительно армируется или усиливается ударопроч­ным фибробетонным оголовком. Известно, что в процессе забивки свай в них возникают не только сжимающие, но и значительные растягивающие усилия, которые воспринимает стержневая, про­волочная или прядевая арматура. Для изготовления свай исполь­зуют бетон не ниже М200, для предварительно напряженных - бетон М300, М400. ПВ При возведении фундаментов в слабых, неустойчивых, водонасыщенных грунтах находят применение следующие виды железо­бетонных свай: с уширениями по стволу; полые круглого сечения; призматические и пирамидальные (рис. 1). Последние, благодаря развитым наклонным поверхностям могут воспринимать большие нагрузки по сравнению с призматическими при меньшем расходе материала. Ромбовидные сваи сплошного сечения рекомендуются на пучинистых грунтах. Представляют интерес также сваи с инвентарной многократно используемой арматурой и составные многосекционные, которые стыкуются между собой сваркой закладных деталей, болтовым соединением металлических фланцев или замковыми устройствами специальной конструкции. В качестве анкерных инвентарных устройств широко распространены винтовые сваи металлические или комбинированные с использованием железобетона и пласт­массы. Винтовой наконечник имеет диаметр лопасти, превы­шающий диаметр сваи, благодаря чему такие сваи хорошо воспри­нимают как вдавливающие, так и выдергивающие нагрузки.

Свайные фундаменты в общем случае представляют собой ряд свай (столбов), заглубленных в грунт и соединенных балками или плитой (ростверком). Применяются свайные фундаменты на слабых грунтах при строительстве здания высотой более одного этажа или в малом строительстве (например, при постройке частных домов по каркасной технологии), когда даже ленточные фундаменты являются избыточными для передачи давления от веса постройки на грунт.

В зависимости от типа, различается несколько видов свай. Классификация идет следующим образом.

По материалу:

· деревянные;

· бетонные, железобетонные;

· металлические.

По наличию пустоты вдоль оси конструкции:

· сплошные;

· полые.

По форме профиля:

· круглые;

· квадратные;

· более сложной геометрии;

· переменного профиля.

По характеру работы:

· опорные;

· висячие (нагрузка на грунт передается трением боковых поверхностей)

 

Основными типами свайных фундаментов считаются:

· забивные – грунт предварительно не извлекается, изделие погружается с помощью различного рода молотов, погружателей и вдавливателей, зачастую с эффектом вибрации, применяются в основном сплошные сваи квадратного сечения;

· оболочечные конструкции, заглубляемый в грунт с помощью вибропогружателей и заполняемые бетонной смесью;

· набивные – изготавливаются по месту путем заливки бетонной смеси в предварительно созданную скважину, смесь уплотняется, вытесняя грунт, могут быть армированными или неармированными;

· винтовые – металлические элементы переменного сечения, чаще всего в виде винтовой поверхности.

 

Опирание ростверка на сборные железобетонные сваи, расположенный лентой

Столбчатые элементы, образующие фундамент, могут располагаться поодиночке (в узловых точках конструкции), лентами (под стенами), кустами (для опирания массивных, передающих большую нагрузку колонн), полем (для опирания ростверка).


Дата добавления: 2018-04-15; просмотров: 558; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!