Стандарты пользовательского интерфейса информационных технологий



3.2.1. Стандартизация в области информационных технологий

Определим понятие «стандартизация» применительно к автоматизированным информационным технологиям [3].

   Стандартизация — принятие соглашения по спецификации, производству и использованию аппаратных и программных средств вычислительной техники; установление и применение стандартов, норм, правил и т.п.

 

Стандартизация в области информационных технологий направлена на повышение степени соответствия своему функциональному назначению видов информационных технологий, составляющих их компонент и процессов. При этом устраняются технические барьеры в международном информационном обмене.

Стандарты обеспечивают возможность разработчикам информационных технологий использовать данные, программные, коммуникационные средства других разработчиков, осуществлять экспорт/импорт данных, интеграцию разных компонент информационных технологий.

К примеру, для регламентации взаимодействия между различными программами предназначены стандарты межпрограммного интерфейса (один из них – стандарт технологии OLE (Object Linking and Embedding — связывание и встраивание объектов). Без таких стандартов программные продукты были бы «закрытыми» друг для друга.

Требования пользователей по стандартизации в сфере информационных технологий реализуются в стандартах на пользовательский интерфейс, например в стандарте GUI (Graphical User Interface).

Стандарты занимают все более значительное место в направлении развития индустрии информационных технологий. Более 1000 стандартов или уже приняты организациями по стандартизации, или находятся в процессе разработки. Процесс стандартизации информационных технологий еще не закончен.

Значительный прогресс достигнут в области стандартизации пользовательского интерфейса, представленного классами и подклассами:

   символьный (подкласс - командный);

   графический (WIMP, подклассы - простой, двухмерный, трехмерный);

   речевой (SILK);

   биометрический (мимический);

   семантический (общественный).

Выделяют два аспекта пользовательского интерфейса: функциональный и эргономический, каждый из которых регулируется своими стандартами.

Например, один из наиболее распространенных графических двумерных интерфейсов WIMP поддерживается следующими функциональными стандартами:

   стандарт ISO 9241-12-1998 регулирует визуальное представление информации, окна, списки, таблицы, метки, поля и др.;

   стандарт ISO 9241-14-1997 - меню;

   стандарт ISO 9241-16-1998 - прямые манипуляции;

   стандарт ISO/IES 10741-1995 - курсор;

   стандарт ISO/IES 12581-(1999-2000) - пиктограммы.

Стандарты, затрагивающие эргономические характеристики, являются унифицированными по отношению к классам и подклассам:

   стандарт ISO 9241-10-1996 - руководящие эргономические принципы, соответствие задаче, самоописательность, контролируемость, соответствие ожиданиям пользователя, толерантность к ошибкам, настраиваемость, изучаемость;

   стандарт ISO/IES 13407-1999 - обоснование, принципы, проектирование и реализация ориентированного на пользователя проекта;

   стандарт ГОСТ Р ИСО/МЭК 12119-2000 - требования к практичности, понятность, обозримость, удобство использования;

   стандарт ГОСТ Р ИСО/МЭК 9126—93 - практичность, понятность, обучаемость, простота использования.

Вопросы стандартизации информационных технологий являются составной частью отдельной учебной дисциплины «Разработка и стандартизация программных средств и технологий» для специальности 351400 «Прикладная информатика (по областям)». В развернутом виде вопросы стандартизации в области информационных технологий представлены в публикациях [3, 14, 19].


31. Критерии оценки информационных технологий.

 

\ Общие подходы к оценке информационных технологий \

В качестве достаточно универсального общего критерия эффективности любых видов технологий можно использовать экономию социального времени5, которая достигается в результате их практического использования.

Эффективность данного критерия особенно хорошо проявляется на примере информационных технологий.

Какие же виды информационных технологий представляются с точки зрения этого критерия наиболее перспективными сегодня и в ближайшем будущем?

Необходимость экономии социального времени opиeнтиpуeт наше внимание, в первую очередь, на технологии, связанные с наиболее массовыми информационными процессами, оптимизация которых, как представляется, должна дать наибольшую экономию социального

времени именно благодаря их широкому и многократному использованию.

 

\ Оценка уровня информационных технологий \

Уровень используемых информационных технологий может быть оценен на основе качественных и количественных характеристик.

Социальное время - темп и ритм протекания событий за определенный период существования индивида, группы или общества.

К качественным характеристикам относится например:

   уровень автоматизации в реализации отдельных фаз по работе с информацией (сбор,накопление, хранение, передача, обработка, выдача);

   используемая платформа в организации автоматизированных информационных технологий;

     степень интеграции видов информационных технологий;

   использование электронного документооборота, современных средств телекоммуникаций и другие.

Количественные характеристики информационных технологий основаны на использовании показателей оценки качества, например, надежность, мобильность, модифицируемость, эффективность и т.д. [4]. Ниже рассматриваются показатели, связанные с экономической эффективностью.

 

\ Критерии эффективности применения информационных технологий \

Эффективность — одно из наиболее общих экономических понятий, не имеющих пока, единого общепризнанного определения.

Эффективность — это одна из возможных характеристик качества системы, а именно ее характеристика с точки зрения соотношения затрат и результатов функционирования системы.

В дальнейшем будем понимать под эффективностью информационных технологий меру соотношения затрат и результатов применения информационных технологий.

В качестве основных показателей эффективности часто рассматривают показатели экономической эффективности: экономический эффект, коэффициент экономической эффективности капитальных вложений, срок окупаемости капитальных вложений и т.д.

    Экономический эффект - результат внедрения какого-либо мероприятия, выраженный в стоимостной форме, в виде экономии от его осуществления.

Так, для организаций, использующих информационные технологии, основными источниками экономии являются:

   улучшение показателей их основной деятельности, происходящее в результате использования информационных технологий6;

   сокращение сроков освоения новых информационных технологий за счет их лучших эргономических характеристик;

   сокращение расхода машинного времени и других ресурсов на отладку и сдачу задач в эксплуатацию при внедрении нового инструментария информационных технологий;

   повышение технического уровня, качества и объемов информационно-вычислительных работ;

   увеличение объемов и сокращение сроков переработки информации;

   повышение коэффициента использования вычислительных ресурсов, средств подготовки и передачи информации;

   уменьшение численности персонала, в том числе высококвалифицированного, занятого обслуживанием программных средств, автоматизированных систем, систем обработки.

Здесь подразумевается использование автоматизированных информационных технологий

информации, переработкой и получением информации;

   снижение трудоемкости работ программистов при программировании прикладных задач с использованием новых информационных технологий в организации-потребителе информационных технологий;

   снижение затрат на эксплуатационные материалы.

   Коэффициент экономической эффективности капитальных вложений показывает величину годового прироста прибыли, образующуюся в результате производства или эксплуатации информационных технологий, на один рубль единовременных капитальных вложений.

   Срок окупаемости (величина, обратная коэффициенту эффективности) — показатель эффективности использования капиталовложений — представляет собой период времени, в течение которого произведенные затраты на информационные технологии окупаются полученным эффектом.

Определение эффективности информационных технологий основано на принципах оценки экономической эффективности производства и использования в народном хозяйстве новой техники, с учетом специфики информационных технологий.

Предварительный экономический эффект рассчитывается до выполнения разработки информационных технологий на основе данных технических предложений и прогноза использования.

Предварительный эффект является элементом технико-экономического обоснования разработки информационных технологий и используется при планировании разработки и их внедрения.

Потенциальный экономический эффект рассчитывается по окончании разработки на основе достигнутых технико-экономических характеристик и прогнозных данных о максимальных объемах использования информационных технологий.

Потенциальный эффект используется    при оценке деятельности организации разработчиков информационных технологий.

Гарантированный экономический эффект рассчитывается в виде гарантированного экономического эффекта для конкретного объекта внедрения и общего гарантированного внедрения по ряду объектов.

Гарантированный экономический эффект для конкретного объекта внедрения рассчитывается после окончания разработки для одного внедрения на основе данных о гарантированном разработчиком удельном эффекте от применения информационных технологий и гарантированных пользователем сроках и годовом объеме использования информационных технологий.

Гарантированный эффект от одного внедрения информационных технологий рассчитывается при оформлении договорных отношений между организацией-разработчиком и организацией-пользователем. Гарантированный общий эффект служит для обоснования цены на информационные технологии, выбора варианта их производства и внедрения.

Фактический экономический эффект рассчитывается на основе данных учета и сопоставления затрат и результатов при конкретных применениях информационных технологий.

Фактический эффект используется для оценки деятельности организаций, разрабатывающих, внедряющих и использующих информационные технологии, для определения размеров отчислений в фонды экономического стимулирования, а также для анализа эффективности функционирования информационных технологий и выработки технических предложений по совершенствованию информационных технологий и условий их применения.

 

Показатели экономической эффективности информационных технологий определяются на основе:

   экономической оценки результатов влияния информационных технологий на конечный результат их использования;

   экономической оценки результатов влияния на технологические процессы подготовки, передачи, переработки данных в вычислительных системах;

   экономической оценки результатов влияния информационных технологий на технологический процесс создания новых видов информационных технологий.

 

\ Расчет экономического эффекта при внедрении информационных технологий\

Современные информационные технологии обеспечиваются средствами компьютерной и коммуникационной техники. Естественно, что их использование требует капитальных вложений (приобретение техники, программного обеспечения и др.). Поэтому, внедрению информационных технологий должно предшествовать экономическое обоснование целесообразности их применения, обоснования выбора платформы и т.д. Иными словами, должна быть рассчитана эффективность применения информационных технологий.

Под эффективностью автоматизированного преобразования информации понимают целесообразность применения средств вычислительной и организационной техники при формировании, передаче и обработке данных.

Различают расчетную и фактическую эффективность.

Расчетная эффективность определяется на стадии проектирования автоматизацииинформационных работ. Фактическая эффективность рассчитывается по результатам внедрения автоматизированных информационных технологий.

Обобщенным критерием экономической эффективности является минимум затрат живого и овеществленного труда. При этом установлено, что чем больше участков прикладных работ автоматизировано, тем эффективнее используется техническое и программное обеспечение.

Экономический эффект от внедрения вычислительной и организационной техники подразделяют на прямой и косвенный.

Под прямой экономической эффективностью информационных технологий понимают экономию материально-трудовых ресурсов и денежных средств, полученную в результате сокращения численности персонала, связанного с реализацией информационных задач (управленческий персонал, инженерно-технический персонал и т.д.), уменьшения фонда заработной платы, расхода основных и вспомогательных материалов вследствие автоматизации конкретных видов информационных работ.

Косвенная эффективность проявляется в конечных результатах деятельности организаций. Например, в управленческой деятельности ее локальными критериями могут быть:

сокращение сроков составления сводок, повышение качества планово-учетных и аналитических работ, сокращение документооборота, повышение культуры и производительности труда и т.д. При анализе косвенной эффективности основным показателем является повышение качества управления, которое, как и при прямой экономической эффективности, ведет к экономии живого и овеществленного труда. Оба вида рассмотренной экономической эффективности взаимоувязаны.

Экономическую эффективность определяют с помощью трудовых и стоимостных показателей.

 

Основным при расчетах является метод сопоставления данных базисного и отчетного периодов.

В качестве базисного периода при переводе отдельных работ на автоматизацию принимают затраты на обработку информации до внедрения информационной технологии (приручной обработке), а при совершенствовании действующей системы автоматизации информационных работ - затраты на обработку информации при достигнутом уровне автоматизации. При этом пользуются абсолютными и относительными показателями.

Например, на ручную обработку документов следует затратить 100 чел./час. (T0), а при использовании информационных технологий - 10 чел./час. (T1).

Абсолютный показатель экономической эффективности TЭК составляет:

                      TЭК = T0 – T1 = 100 – 10 = 90 чел./час.

Относительный индекс производительности труда

                                     JПТ = 0,10

означает, что для обработки документов при автоматизации требуется по сравнению с ручной обработкой только 10 % времени.

Используя индекс производительности труда JПТ., можно определить относительный показатель экономии трудовых затрат. В примере, при обработке документов в результате применения информационной технологии экономия составит 90 %.

Наряду с трудовыми показателями, рассчитываются и стоимостные показатели, т.е. определяются затраты (в денежном выражении) на обработку информации при базисном (C0) и отчетном (C1) вариантах.

Абсолютный показатель стоимости CЭК определяется соотношением:

                                   CЭК = C1 - C0.

Индекс стоимости затрат рассчитывается по формуле

                                   Jст.зат = C1 / C0.

Срок окупаемости затрат Tок устанавливается по формуле:

                         Tок = ( (З0 + П0) Кэ ф ) / (C0 – C1),

где З0 - затраты на техническое обеспечение;

  П0 - затраты на программное обеспечение;

  Кэ ф - коэффициент эффективности.

Технологические стадии разработки автоматизированных информационных технологий и систем регламентируются российскими и международными стандартами.


32. Пользовательский интерфейс и его виды.

 

Интерфе́йс по́льзователя, он же по́льзовательский интерфейс (UI — англ. user interface) — разновидность интерфейсов, в котором одна сторона представлена человеком (пользователем), другая — машиной/устройством. Представляет собой совокупность средств и методов, при помощи которых пользователь взаимодействует с различными, чаще всего сложными, с множеством элементов, машинами и устройствами.

Интерфейс двунаправленный — устройство, получив команды от пользователя и исполнив их, выдаёт информацию обратно, наличествующими у неё средствами (визуальными, звуковыми и т. п.), приняв которую, пользователь выдаёт устройству последующие команды предоставленными в его распоряжение средствами (кнопки, переключатели, регуляторы, сенсоры, голосом, и т. д.).

Чаще всего термин применяется по отношению к компьютерным программам, однако под ним может подразумеваться любая система взаимодействия с устройствами, способными к интерактивному общению с пользователем. Несколько широко распространённых примеров:

•         меню на экране телевизора — пульт дистанционного управления;

•         дисплей электронного аппарата (автомагнитолы, часов) — набор кнопок и переключателей для настройки;

•         приборная панель (автомобиля, самолёта) — рычаги управления.

Поскольку интерфейс есть совокупность, то он состоит из элементов, которые, сами по себе, также могут состоять из элементов (так, окно дисплея может содержать в себе другие окна, которые, в свою очередь, могут содержать панели, кнопки и прочие интерфейсные элементы).

Особое и отдельное внимание в интерфейсе пользователя традиционно уделяется его эффективности и удобству пользования (юзабельности).

Современными видами интерфейсов являются:

1) Командный интерфейс. Командный интерфейс называется так по тому, что в этом виде интерфейса человек подает "команды" компьютеру, а компьютер их выполняет и выдает результат человеку. Командный интерфейс реализован в виде пакетной технологии и технологии командной строки.

2) WIMP - интерфейс (Window - окно, Image - образ, Menu - меню, Pointer - указатель). Характерной особенностью этого вида интерфейса является то, что диалог с пользователем ведется не с помощью команд, а с помощью графических образов - меню, окон, других элементов. Хотя и в этом интерфейсе подаются команды машине, но это делается "опосредственно", через графические образы. Этот вид интерфейса реализован на двух уровнях технологий: простой графический интерфейс и "чистый" WIMP - интерфейс.

3) SILK - интерфейс (Speech - речь, Image - образ, Language - язык, Knowlege - знание). Этот вид интерфейса наиболее приближен к обычной, человеческой форме общения. В рамках этого интерфейса идет обычный "разговор" человека и компьютера. При этом компьютер находит для себя команды, анализируя человеческую речь и находя в ней ключевые фразы. Результат выполнения команд он также преобразует в понятную человеку форму. Этот вид интерфейса наиболее требователен к аппаратным ресурсам компьютера, и поэтому его применяют в основном для военных целей.


33. Пакетная технология.

Исторически этот вид технологии появился первым. Она существовала уже на релейных машинах Зюса и Цюзе (Германия, 1937 год). Идея ее проста: на вход компьютера подается последовательность символов, в которых по определенным правилам указывается последовательность запущенных на выполнение программ. После выполнения очередной программы запускается следующая и т.д. Машина по определенным правилам находит для себя команды и данные. В качестве этой последовательности может выступать, например, перфолента, стопка перфокарт, последовательность нажатия клавиш электрической пишущей машинки (типа CONSUL). Машина также выдает свои сообщения на перфоратор, алфавитно-цифровое печатающее устройство (АЦПУ), ленту пишущей машинки.


34. Технология командной строки.

 

Интерфейс командной строки (англ. Command line interface, CLI) — разновидность текстового интерфейса (CUI) между человеком и компьютером, в котором инструкции компьютеру даются в основном путём ввода с клавиатуры текстовых строк (команд), в UNIX-системах возможно применение мыши. Также известен под названием консоль.

Интерфейс командной строки противопоставляется системам управления программой на основе меню, а также различным реализациям графического интерфейса.

Формат вывода информации в интерфейсе командной строки не регламентируется; обычно это также простой текстовый вывод, но может быть и графическим, звуковым и т. д.

\Назначение\

На устройстве-консоли, которое печатало текст на бумаге, интерфейс командной строки был единственным возможным. На видеотерминалах интерфейс командной строки применяется по таким причинам:

Небольшой расход памяти по сравнению с системой меню.

В современном программном обеспечении имеется большое число команд, многие из которых нужны крайне редко. Поэтому даже в некоторых программах с графическим интерфейсом применяется командная строка: набор команды (при условии, что пользователь знает эту команду) осуществляется гораздо быстрее, чем, например, навигация по меню.

Естественное расширение интерфейса командной строки — пакетный интерфейс. Его суть в том, что в файл обычного текстового формата записывается последовательность команд, после чего этот файл можно выполнить в программе, что возымеет такой же (не меньший) эффект, как если бы эти команды были по очереди введены в командную строку. Примеры — .bat-файлы в DOS и Windows, shell-скрипты в Unix-системах.

Если программа полностью или почти полностью может управляться командами интерфейса командной строки и поддерживает пакетный интерфейс, умелое сочетание интерфейса командной строки с графическим предоставляет пользователю очень мощные возможности.


35. Графические интерфейсы и средства их разработки.

 

Как и когда появился графический интерфейс?

Его идея зародилась в середине 70-х годов, когда в исследовательском центре Xerox Palo Alto Research Center (PARC) была разработана концепция визуального интерфейса. Предпосылкой графического интерфейса явилось уменьшение времени реакции компьютера на команду, увеличение объема оперативной памяти, а также развитие технической базы компьютеров. Аппаратным основанием концепции, конечно же, явилось появление алфавитно-цифровых дисплеев на компьютерах, причем на этих дисплеях уже имелись такие эффекты, как "мерцание" символов, инверсия цвета (смена начертания белых символов на черном фоне обратным, то есть черных символов на белом фоне), подчеркивание символов. Эти эффекты распространились не на весь экран, а только на один или более символов. Следующим шагом явилось создание цветного дисплея, позволяющего выводить, вместе с этими эффектами, символы в 16 цветах на фоне с палитрой (то есть цветовым набором) из 8 цветов. После появления графических дисплеев, с возможностью вывода любых графических изображений в виде множества точек на экране различного цвета, фантазии в использовании экрана вообще не стало границ! Первая система с графическим интерфейсом 8010 Star Information System группы PARC, таким образом, появилась за четыре месяца до выхода в свет первого компьютера фирмы IBM в 1981 году. Первоначально визуальный интерфейс использовался только в программах. Постепенно он стал переходить и на операционные системы, используемых сначала на компьютерах Atari и Apple Macintosh, а затем и на IBM -- совместимых компьютерах.

С более раннего времени, и под влиянием также и этих концепций, проходил процесс по унификации в использовании клавиатуры и мыши прикладными программами. Слияние этих двух тенденций и привело к созданию того пользовательского интерфейса, с помощью которого, при минимальных затратах времени и средств на переучивание персонала, можно работать с любыми программным продуктом. Описание этого интерфейса, общего для всех приложений и операционных систем, и посвящена данная часть.

Графический интерфейс пользователя за время своего развития прошел две стадии. Об эволюции графического интерфейса с 1974 по настоящее время будет рассказано ниже.

A.1.3.1. Простой графический интерфейс.

На первом этапе графический интерфейс очень походил на технологию командной строки. Отличия от технологии командной строки заключались в следующим.

a) При отображении символов допускалось выделение части символов цветом, инверсным изображением, подчеркиванием и мерцанием. Благодаря этому повысилась выразительность изображения.

b) В зависимости от конкретной реализации графического интерфейса курсор может представляться не только мерцающим прямоугольником, но и некоторой областью, охватывающей несколько символов и даже часть экрана. Эта выделенная область отличается от других, невыделенных частей (обычно цветом).

c) Нажатие клавиши Enter не всегда приводит к выполнению команды и переходу к следующей строке. Реакция на нажатие любой клавиши во многом зависит от того, в какой части экрана находился курсор.

d) Кроме клавиши Enter, на клавиатуре все чаще стали использоваться "серые" клавиши управления курсором (см. раздел, посвященный клавиатуре в выпуске 3 данной серии.)

e) Уже в этой редакции графического интерфейса стали использоваться манипуляторы (типа мыши, трекбола и т.п. - см. рисунок A.4.) Они позволяли быстро выделять нужную часть экрана и перемещать курсор.

Подводя итоги, можно привести следующие отличительные особенности этого интерфейса.

1) Выделение областей экрана.

2) Переопределение клавиш клавиатуры в зависимости от контекста.

3) Использование манипуляторов и серых клавиш клавиатуры для управления курсором.

4) Широкое использование цветных мониторов.

Появление этого типа интерфейса совпадает с широким распространением операционной системы MS-DOS. Именно она внедрила этот интерфейс в массы, благодаря чему 80-е годы прошли под знаком совершенствования этого типа интерфейса, улучшения характеристик отображения символов и других параметров монитора.

Типичным примером использования этого вида интерфейса является файловая оболочка Nortron Commander (о файловых оболочках смотри ниже) и текстовый редактор Multi-Edit. А текстовые редакторы Лексикон, ChiWriter и текстовый процессор Microsoft Word for Dos являются примером, как этот интерфейс превзошел сам себя.


36. Технологический процесс обработки и защиты данных.

 

В процессах автоматизированной обработки экономической информации (АОЭИ) в качестве объекта, подвергающегося преобразованиям, выступают различного рода данные, которые характеризуют те или иные экономические явления. Такие процессы именуются технологическими процессами АОЭИ и представляют собой комплекс взаимосвязанных операций, протекающих в установленной последовательности. Или, более детально, это процесс преобразования исходной информации в выходную с использованием технических средств и ресурсов.

Рациональное проектирование технологических процессов обработки данных в ЭИС во многом определяет эффективное функционирование всей системы.

Весь технологический процесс обработки данных можно подразделить на процессы:

o сбора и ввода исходных данных в вычислительную систему;

o размещения и хранения данных в памяти системы;

o обработки данных с целью получения результатов;

o выдачи данных в виде, удобном для восприятия пользователем.

Технологический процесс обработки данных можно разделить на четыре укрупненных этапа:

1) начальный или первичный (сбор исходных данных, их регистрация и передача на ВУ);

2) подготовительный (прием, контроль, регистрация входной информации и перенос ее на машинный носитель);

3) основной (непосредственно обработка информации);

4) заключительный (контроль, выпуск и передача результатной информации, ее размножение и хранение).

5.1. Технологические операции сбора, передачи, хранения, контроля и обработки данных

В зависимости от используемых технических средств и требований к технологии обработки информации изменяется и состав операций технологического процесса. Например, информация на ВУ может поступать на МН, подготовленные для ввода в ЭВМ, или передаваться по каналам связи с места ее возникновения.

Операции сбора и регистрации данных осуществляются с помощью различных средств. Различают:

- механизированный сбор и регистрация информации осуществляется непосредственно человеком с использованием простейших приборов (весы, счетчики, мерная тара, приборы учета времени и т. д.);

- автоматизированный сбор осуществляется с использованием машиночитаемых документов, регистрирующих автоматов, универсальных систем сбора и регистрации, обеспечивающих совмещение операций формирования первичных документов и получения машинных носителей;

- автоматический способ сбора используется в основном при обработке данных в режиме реального времени (информация с датчиков, учитывающих ход производства — выпуск продукции, затраты сырья, простои оборудования и т. д., поступает непосредственно в ЭВМ).

Технические средства передачи данных включают:

- аппаратуру передачи данных (АПД), которая соединяет средства обработки и подготовки данных с телеграфными, телефонными и широкополосными каналами связи;

- устройства сопряжения ЭВМ с АПД, которые управляют обменом информации — мультиплексоры передачи данных.

Запись и передача информации по каналам связи в ЭВМ имеет следующие преимущества:

- упрощает процесс формирования и контроля информации;

- соблюдается принцип однократной регистрации информации в первичном документе и машинном носителе;

- обеспечивается высокая достоверность информации, поступающей в ЭВМ.

Дистанционная передача данных, основанная на использовании каналов связи, представляет собой передачу данных в виде электрических сигналов, которые могут быть непрерывными во времени и дискретными, т. е. носить прерывный во времени характер. Наиболее широко используются телеграфные и телефонные каналы связи. Электрические сигналы, передаваемые по телеграфному каналу связи, являются дискретными, а по телефонному — непрерывными.

При обмене данными между узлами используются три метода передачи данных:

- симплексная (однонаправленная) передача (телевидение, радио);

- полудуплексная (прием/передача информации осуществляется поочередно);

- дуплексная (двунаправленная), каждая станция одновременно передает и принимает данные.


37. Графическое изображение технологического процесса, меню, схемы данных, схемы взаимодействия программ. (Визуализация)

Создание трехмерных моделей оказывается наиболее эффектным и, в конечном итоге, экономичным способом наглядного иллюстрирования машин, механизмов и всего процесса в целом. Оно позволяет избежать чрезмерных финансовых затрат, сэкономить массу человеко-часов и тем самым способствовать повышению экономической эффективности технологического процесса при его реализации.

                          Почему это так? Ответ очевиден – возможности 3D-графики на порядок превосходят таковые у двухмерных изображений – схем, чертежей и рисунков, используемых для графического отображения технологического процесса.

Для сравнения обратимся к монохромным (черно-белым) схемам и чертежам. Практически никогда они не дадут такой наглядности, как реалистичная и многокрасочная 3D-графика. Кроме того, современные программы и системы 3D-моделирования при необходимости могут создавать объекты и описания процессов со степенью реалистичности, близкой к фотографической. Правда, в нашем случае последнее бывает нужно достаточно редко, так как при иллюстрировании именно технологических процес-сов задача дизайна сугубо практична: не удивить зрителя красотой картинки, а облегчить понимание технологического процесса. Максимально детальная проработка, вплоть до полной реалистичности, обычно не является целесообразной.

При большом количестве иллюстраций – например, при создании схемы уже существующего в реальности производственного процесса, такого, как прокатка металла – могут потребоваться сотни и даже тысячи иллюстраций (см. рисунок). И в этом случае создание иллюстрирующих картинок в трехмерном изображении происходит на порядок быстрее двухмерной прорисовки. За счет чего?

                          Во-первых, все оптические характеристики поверхности материала – цвет, отражающая и преломляющая способности, гладкость, цвет и характер распределения (форма) блика, текстура и другие – для конкретной поверхности создаются с какой угодно тщательностью. Иногда относительно долго, но – всего один раз. И после того, как материал создан, его можно применять к любому количеству каких угодно форм, а делается это практически моментально, как по трафарету.

                          Во-вторых, однажды созданный объект (а также и процесс) можно «покрутить» в 3D вкруг своей оси, расположить удобнее для просмотра, сделать «наезд» на какую-либо деталь/часть/отсек и рассмотреть ее с необходимого угла зрения.

                          Кроме того, при желании можно посмотреть любой разрез, цветом показать какое-либо из невидимых измерений (например, толщину), что, естественно, упрощает и убыстряет процесс создания большого (и не очень) количества иллюстраций.

Конструкторы получают возможность не только демонстрировать свои достижения стороннему наблюдателю, но и оптимизировать разрабатываемые процессы и устройства, опираясь на их виртуальные макеты.

Cимуляторы технологических процессов

                          Трехмерное моделирование технологического процесса на предприятиях любых отраслей промышленности используется:
для управления технологическим процессом и контроля над ним;

для обеспечения производственной безопасности и снижения рисков;

для обучения персонала промышленных предприятий;

при демонстрации продукции/промышленного технологического процесса заказчикам и потенциальным клиентам.
38. Речевая технология.

 

Необходимость кодирования речевой информации возникла не так давно, но на сегодняшний момент, в связи с бурным развитием техники связи, особенно мобильной связи, решение этой проблемы имеет большое значение при разработке систем связи.

Сразу необходимо оговориться, что речевая информация принципиально отличается от другого вида - текстов (рукописных и в электронном виде). При шифровании текста мы имеем дело с ограниченным и определенно известным нам набором символов. Поэтому при работе с текстом можно использовать такие шифры, как шифры перестановки, шифры замены, шифры взбивания и т.д. Речь же нельзя (во всяком случае на сегодняшнем уровне развития технологи распознавания речи)представить таким набором каких-либо знаков или символов. Поэтому применяются другие методы, которые, в свою очередь, делятся на аналоговые и цифровые. В настоящее время больше распространены цифровые методы, на них- то мы и остановимся.

Принцип цифрового кодирования заключается в следующем: аналоговый сигнал от микрофона подается на АЦП, на выходе которого имеем n-разрядный код (при подборе хорошей частоты дискретизации пользователь на другом конце линии может и не догадаться, что голос его собеседника оцифровали, а потом (на базовом аппарате) перевели обратно в аналоговую форму). Затем этот код шифруется с помощью всевозможных алгоритмов, переносится в диапазон радиочастот, модулируется и передается в эфир.

Построение речевого интерфейса распадается на три составляющие.

 

I. Первая задача состоит в том, чтобы компьютер мог «понять» то, что ему говорит человек, то есть он доложен уметь извлекать из

речи человека полезную информацию. Пока что, на нынешнем этапе, эта задача сводится к тому, чтобы извлечь из речи смысловую ее

часть, текст (понимание таких составляющих, как скажем, интонация, пока вообще не рассматривается). То есть эта задача

сводится к замене клавиатуры микрофоном.

II. Вторая задача состоит в том, чтобы компьютер воспринял смысл сказанного. Пока  речевое сообщение состоит из некоего

стандартного набора понятных компьютеру команд (скажем, дублирующих пункты меню), ничего сложного в ее реализации нет.

Однако вряд ли такой подход будет удобнее, чем ввод этих же команд с клавиатуры или при помощи мыши. Пожалуй, даже удобнее

просто щелкнуть мышкой по иконке приложения, чем четко выговаривать (к тому же мешая окружающим); «Старт! Главное меню!

Бери!» В идеале компьютер должен четко «осмысливать» естественную речь человека и понимать, что, к примеру, слова

«Хватит!» и «Кончай работу!» означают в одной ситуации разные понятия, а в другой - одно и то же.

 III. Третья задача состоит в том, чтобы компьютер мог преобразовать информацию, с которой он оперирует, в речевое сообщение,

понятное человеку. Так вот, из этих трех задач достаточно ясное и окончательное решение существует только для третьей. По сути, синтез речи - это чисто математическая задача, которая в настоящее время решена на

довольно хорошем уровне. И в ближайшее время, скорее всего, будет совершенствоваться только ее техническая реализация


39. Биометрическая технология.

 

Биометрия (англ. Biometrics) — технология идентификации личности, использующая физиологические параметры субъекта (отпечатки пальцев, радужная оболочка глаза и т. д.).

Обычно при классификации биометрических технологий выделяют две группы систем по типу используемых биометрических параметров. Первая группа систем использует статические биометрические параметры: отпечатки пальцев, геометрия руки, сетчатка глаза и т. п. Вторая группа систем использует для идентификации динамические параметры: динамика воспроизведения подписи или рукописного ключевого слова, голос и т. п.

Увеличившийся в последнее время интерес к данной тематике в мире принято связывать с угрозами активизировавшегося международного терроризма. Многие государства в ближайшей перспективе планируют ввести в обращение паспорта с биометрическими данными.

Биометрические технологии основаны на биометрии, измерении уникальных характеристик отдельно взятого человека. Это могут быть как уникальные признаки, полученные им с рождения, например: ДНК, отпечатки пальцев, радужная оболочка глаза; так и характеристики, приобретённые со временем или же способные меняться с возрастом или внешним воздействием. Например: почерк, голос или походка.

биометрические технологии активно применяются во многих областях связанных с обеспечением безопасности доступа к информации и материальным объектам, а также в задачах уникальной идентификации личности.

Применения биометрических технологий разнообразны: доступ к рабочим местам и сетевым ресурсам, защита информации, обеспечение доступа к определённым ресурсам и безопасность. Ведение электронного бизнеса и электронных правительственных дел возможно только после соблюдения определённых процедур по идентификации личности. Биометрические технологии используются в области безопасности банковских обращений, инвестирования и других финансовых перемещений, а также розничной торговле, охране правопорядка, вопросах охраны здоровья, а также в сфере социальных услуг. Биометрические технологии в скором будущем будут играть главную роль в вопросах персональной идентификации во многих сферах. Применяемые отдельно или используемые совместно со смарт-картами, ключами и подписями, биометрия скоро станет применяться во всех сферах экономики и частной жизни


40. Автоматизированное рабочее место, электронный офис.

 

Автоматизи́рованное рабо́чее ме́сто (АРМ) — программно-технический комплекс, предназначенный для автоматизации деятельности определенного вида. При разработке АРМ для управления технологическим оборудованием как правило используют SCADA-системы.

АРМ объединяет программно-аппаратные средства, обеспечивающие взаимодействие человека с компьютером, предоставляет возможность ввода информации (через клавиатуру, компьютерную мышь, сканер и пр.) и её вывод на экран монитора, принтер, графопостроитель, звуковую карту — динамики или иные устройства вывода. Как правило, АРМ является частью АСУ.

 


Дата добавления: 2018-04-05; просмотров: 2112; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!