Постоянный эл. ток ( определение, примеры). Элементарная теория проводимости металлов



 

На рис. красным цветом изображён график постоянного тока.По горизонтальной оси отложен масштаб времени {\displaystyle t}, а по вертикальной — масштаб тока {\displaystyle I} или электрического напряжения {\displaystyle U}.

График постоянного тока- прямая линия, параллельнуаягоризонтальной.оси (оси времени).

 

Пульсирующий ток, форма импульсов близка к пилообразной

Постоянный ток

Произвольно изменяющийся ток

Переменный синусоидальный ток

Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Постоянный ток является разновидностью однонаправленного тока.

Однонаправленный ток - это электрический ток, не изменяющий своего направления

Величина постоянного тока {\displaystyle I} и электрического напряжения {\displaystyle U} для любого момента времени сохраняется неизменной.

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов).

Электрический ток -упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Переносчиками электрических зарядов являются:

· в металлах — свободные электроны;

· в электролитах — ионы: катионы и анионы;

· в газах — ионы и электроны;

· в вакууме — электроны, образовавшиеся при электронной эмиссии;

· в полупроводниках — электроны и дырки.

Постоянное движение электрических зарядов создаётся и поддерживается сторонними силами, которые могут иметь химическую (в гальванических элементах), электромагнитную (динамо-машина постоянного тока), механическую (электрофорная машина) или иную (например, радиоактивную в стронциевых источниках тока) природу. Во всех случаях источник тока является преобразователем энергии сторонних сил в электрическую.

Электрическое поле, сопутствующее постоянному току в проводнике и в соответствии с этим стационарное распределение в нём электрических зарядов, называется стационарным (неизменным во времени) электрическим полем.

Постоянный электрический ток может существовать только в замкнутом на себя контуре, состоящем из совокупности проводников электричества, в котором действует стационарное электрическое поле.

Источники постоянного тока

1)химические источники тока: гальванические элементы, аккумуляторы.

2)электрические машины — генераторы постоянного тока, солнечные батареи.

3) в электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют блоки питания..

4) в современной радиоэлектронной аппаратуре получили распространение импульсные блоки питания. Сглаживание пульсаций выходного напряжения происходит благодаря наличию интегрирующего элемента, способного накапливать электрическую энергию и отдавать её в нагрузку. В рез-те на выходе можно получить практически постоянный ток.

5) электрические конденсаторы. В общем случае, при разряде конденсатора во внешней цепи протекает переменный ток. Если конденсатор разряжается через резистор, то появляется однонаправленный переменный ток (постепенно уменьшающийся). Однако, если конденсатор разряжается через катушку индуктивности, то в цепи появляется двунаправленный переменный ток, это устройство называется колебательный контур.

6)Ионисторы — гибрид конденсатора и химического источника тока.

 

20

Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е

Вектор плотности тока направлен вдоль скорости движения положительных зарядов. Единицей измерения плотности тока в системе СИ является А/м2.

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току. Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения. Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

 

 

22

23-24

Где Гдеи когда можно применять закон Ома?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

 

Значение Закона Ома

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

 

 

Сила Ампера. Применение.

ОПРЕДЕЛЕНИЕ

Сила АмпераFA→ − это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Модуль силы Ампера FA равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника L, силы тока I в нем и синуса угла α между направлениями тока и вектора индукции магнитного поля B→:

FA=B⋅I⋅L⋅sin⁡α

Этой формулой можно пользоваться:

  • если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
  • если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера FA→ применяют правило левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля B→ входил в ладонь, четыре вытянутых пальца указывали направление тока I, тогда отогнутый на 900большой палец укажет направление силы Ампера FA→.

Поскольку величина B⋅sin⁡α представляет собой модуль компоненты вектора индукции, перпендикулярной проводнику с током, то ориентацию ладони можно определять именно этой компонентой − перпендикулярная составляющая к поверхности проводника должна входить в открытую ладонь левой руки.

Сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sina

I - сила тока в проводнике;

B - модуль вектора индукции магнитного поля;

L - длина проводника, находящегося в магнитном поле;

a - угол между вектором магнитного поля инаправлением тока в проводнике.

 

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

                                                             F = I·L·B

Ей соответствует a = 900.

 

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

 

Зная направление и модуль силы, действующей на любой участок проводника с током, можно вычислить силу, действующую на весь замкнутый проводник. Для этого надо найти сумму сил, действующих на каждый участок проводника с током. Закон Ампера используют для расчёта сил, действующих на проводники с током во многих технических устройствах, в частности в электродвигателях, с которыми ты знакомился в предыдущих классах, электродвигателях всевозможных видав транспорта и промышленности, в электромагнитах большой и малой мощности. Благодаря работе силы Ампера едет трамвай, бежит электричка, поднимается лифт, раздвигаются ворота, электродвери, перемещаются части многих и многих технических устройств, созданных инженерами.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,

F = IBΔl sin α

может быть выражена через силы, действующие на отдельные носители заряда.

Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение n q υ S, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:

I = q n υ S.

Выражение для силы Ампера можно записать в виде:

F = q n S Δl υB sin α.

Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно n S Δl, то сила, действующая на одну заряженную частицу, равна

FЛ = q υ B sin α.

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции . Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Рисунок 1.18.1. Взаимное расположение векторов , и Модуль силы Лоренца численно равен площади параллелограмма, построенного на векторах и помноженной на заряд q

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

Рисунок 1.18.2. Круговое движение заряженной частицы в однородном магнитном поле

Период обращения частицы в однородном магнитном поле равен

Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R.

Угловая скорость движения заряженной частицы по круговой траектории

называется циклотронной частотой. Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах – ускорителях тяжелых частиц (протонов, ионов).

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов. Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20Ne и 22Ne). Простейший масс-спектрометр показан на рис. 1.18.4. Ионы, вылетающие из источника S, проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей, в котором частицы движутся в скрещенных однородных электрическом и магнитном полях. Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и

На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B.

 

Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле.

Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.

 

Сила Лоренца — векторная величина. Сила Лоренца принимает своё наибольшее значение когда векторы индукции и направления скорости частицы перпендикулярны

Направление силы Лоренца определяют по правилу левой руки:

Если вектор магнитной индукции входит в ладонь левой руки и четыре пальца вытянуты в сторону направления вектора движения тока, тогда отогнутый в сторону большой палец показывает направление силы Лоренца.

В однородном магнитном поле частица будет двигаться по окружности, при этом сила Лоренца будет центростремительной силой. Работа при этом не будет совершаться.

34-35



Дата добавления: 2018-04-04; просмотров: 1241; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!