I.2. Кислотно-основные свойства растворов электролитов

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Национальный минерально-сырьевой университет «Горный»

 

Кафедра общей и физической химии

 

Аналитическая химия и фхма

 

Методические указания к самостоятельным работам

для студентов, обучающихся по направлению подготовки бакалавриата 240100

 

САНКТ-ПЕТЕРБУРГ

 

2012

 


УДК 546 (076.5)

 

 

Аналитическая химия и ФХМА:Методические указания для самостоятельной работы / Национальный минерально-сырьевой университет «Горный». Сост.: И.В. Берлинский

 

Содержат задачи по аналитической химии и физико-химическим методам анализа, предназначенные для студентов, обучающихся по направлению подготовки бакалавриата 240100 «Химическая технология» .

 

 

Библиогр.: 8

 

Научный редактор: проф. Чиркст Д.Э.

 

© Национальный минерально-сырьевой

университет «Горный» , 2012 г.


I. Равновесия в растворах электролитов

I.1. Расчет ионной силы раствора

Задание I.1.Решить задачи.

1. – 35. Вычислить ионную силу раствора заданной концентрации.

Вещество Концентрация раствора d, г/см3
1 Al2(SO4)3 0,15 экв/л 1,009
2 AlCl3 0,55 % 1,007
3 BaCl2 1,69 моль/л 1,28
4 Ba(NO3)2 0,525 моль/л 1,092
5 CaCl2 2,2 % 1,01
6 CdCl2 0,5 моль/л 1,08
7 Cd(NO3)2 0,5 экв/л 1,04
8 CrCl3 0,6 экв/л 1,022
9 Cr2(SO4)3 0,3 моль/л 1,021
10 CuSO4 1,037 моль/кг 1,206
11 FeCl3 1,9 моль/л 1,234
12 FeSO4 0,3 экв/л 1,02
13 Fe2(SO4)3 0,3 моль/л 1,03
14 H2SO4 1,56 моль/л 1,095
15 H3PO4 7,3 мол. % 1,181
16 HCl 1,17 моль/кг 1,05
17 Hg(NO3)2 0,25 моль/л 1,174
18 HNO3 6 г/л 1,01
19 K2Cr2O7 0,18 моль/кг 1,033
20 KMnO4 0,25 экв/л 1,027
21 KOH 8,107 экв/л 1,336
22 MgSO4 20 % 1,219
23 MgCl2 2 % 1,02
24 MnCl2 10 % 1,086
25 MnSO4 1 % 1,0
26 Na2CO3 0,39 моль/л 1,019
27 Na2CO3 4,1 % 1,019
28 NaBr 5,8 мол. % 1,21
29 NaBr 26 % 1,21
30 NaCl 7,1 мол. % 1,147
31 NaOH 13 % 1,142
32 NaOH 0,37 экв/л 1,142
33 Pb(NO3)2 30 % 1,328
34 ZnSO4 1,374 экв/л 1,107
35 ZnSO4 87 г/л 1,084

36. Для осаждения в виде хлорида всего серебра, содержащегося в 100 мл раствора нитрата серебра, потребовалось 50 мл 0,2 н. раствора соляной кислоты. Какова нормальность раствора нитрата серебра, какая масса хлорида серебра выпала в осадок? Найти ионную силу конечного раствора.

37. На нейтрализацию 31 мл 0,16 н. раствора щелочи требуется 217 мл раствора серной кислоты. Чему равна нормальность раствора серной кислоты? Найти ионную силу раствора после смешения кислоты и щелочи.

38. На нейтрализацию одного литра раствора, содержащего 1,4 г гидроксида калия, требуется 50 мл раствора фосфорной кислоты. Вычислить нормальность раствора кислоты и ионную силу.

39. Какая масса азотной кислоты содержалась в 0,5 л раствора, если на нейтрализацию его потребовалось 35 мл 0,4 н. раствора гидроксида натрия? Вычислить ионную силу раствора после нейтрализации.

40. Сколько миллилитров 0,1 н. едкого натра (NaOH) потребуется для осаждения меди в виде гидроксида из 20 мл раствора сульфата меди, в 1 л которого содержится 10 г меди? Вычислить ионную силу раствора после реакции.

41. Сколько миллилитров раствора соды, содержащего в 1 л 21,2 г соли, надо добавить к 30 мл 0,2 н. раствора хлорида кальция для полного осаждения кальция в виде карбоната? Вычислить ионную силу раствора после реакции.

42. В каком объемном отношении надо смешать растворы гидроксида бария с концентрацией 95,5 г/л и 0,5 н. соляной кислоты для получения раствора с нейтральной средой? Вычислить ионную силу раствора после реакции.

43. Сколько миллилитров раствора нитрата серебра, содержащего 5 г/л серебра, надо добавить к 10 мл 0,2 н. раствора хлорида натрия, чтобы полностью удалить из раствора ионы хлора? Вычислить ионную силу раствора после реакции.

44. Сколько миллилитров 2 н. серной кислоты потребуется для превращения 1,56 г гидроксида алюминия в сульфат алюминия? Вычислить ионную силу раствора после реакции.

45. Сколько граммов карбоната кальция можно растворить в 100 мл 20 % соляной кислоты плотностью 1,1 г/см3? Вычислить объем, который займет выделившийся газ при нормальных условиях и ионную силу полученного раствора.

46. К 5 г цинка прибавили 100 мл 10,2 % соляной кислоты (плотность раствора 1,05 г/см3). Какое вещество, и в каком количестве осталось в избытке? Вычислить объем выделившегося водорода при 20ºС и 750 мм рт. ст. и ионную силу полученного раствора.

47. На нейтрализацию 20 мл 5,66 % раствора гидроксида калия плотностью 1,053 г/см3 пошло 12,1 мл раствора серной кислоты плотностью 1,052 г/см3. Определить концентрацию (%) раствора серной кислоты и ионную силу конечного раствора.

48. На нейтрализацию 50 мл раствора фосфорной кислоты плотностью 1,01 г/см3 израсходовано 31,2 г 1 н. раствора гидроксида натрия плотностью 1,04 г/см3. Определить концентрацию (%) фосфорной кислоты и ионную силу конечного раствора.

49. 10 г сплава меди с цинком обработали соляной кислотой (объем раствора 1,5 л, концентрация 0,02 н.). При этом выделилось 570 мл водорода, измеренных при температуре 27ºС и давлении 1 атм. Определить состав сплава и выразить его в массовых и мольных долях. Вычислить ионную силу раствора после реакции.

50. Для нейтрализации 20 мл 0,1 н. раствора соляной кислоты потребовалось 8 мл раствора гидроксида натрия. Сколько граммов NaOH содержит 1 л этого раствора? Вычислить ионную силу раствора после реакции.

51. Какой объем 0,2 н. раствора кислоты требуется для нейтрализации раствора, содержащего 0,51 г гидроксида калия в 30 мл? Вычислить ионную силу раствора после реакции.

52. Сколько и какого вещества останется в избытке, если к 150 мл 0,4 н. раствора соляной кислоты прибавить 250 мл 0,2 н. раствора гидроксида натрия? Вычислить ионную силу раствора после реакции.

53. Определить эквивалентную массу кислоты, если на нейтрализацию раствора, содержащего 0,63 г кислоты, израсходовано 20 мл 0,5 н. раствора щелочи. Вычислить ионную силу раствора щелочи.

54. На нейтрализацию раствора, содержащего 4,05 г кислоты, израсходовано 40 мл раствора едкого натра (NaOH) концентрацией 10 % плотностью 1,109 г/см3. Определить эквивалентную массу кислоты. Вычислить ионную силу раствора щелочи.

55. К 50 л раствора фосфорной кислоты концентрацией 8 % плотностью 1,042 г/см3 прибавили 2 л фосфата натрия концентрацией 5 г/л. Рассчитать молярную концентрацию фосфат-иона в полученном растворе и его ионную силу.

56. Смешали 4 мл серной кислоты концентрацией 40 % (плотность 1,303 г/см3) и 200 мл серной кислоты, концентрацией 0,001 моль/л. Рассчитать нормальную концентрацию и ионную силу полученного раствора.

57. Смешали 8 л раствора соляной кислоты концентрацией 4 моль/л и 11 л раствора ее же концентрацией 2 г/л. Рассчитать концентрацию полученного раствора (г/л) и его ионную силу .

58. К 1,2 л 1,8 н. раствора сульфата хрома (III) добавили 3 л 1 % раствора гидроксида аммония (плотность равна 1 г/см3). Рассчитать ионную силу полученного раствора.

59. К раствору объемом 30 мл, содержащему 10 г серной кислоты в 100 мл раствора, прибавили 40 мл раствора NaOH, содержащего 9 г гидроксида натрия в 100 мл раствора. Найти молярную концентрацию того вещества, которое останется в избытке и ионную силу полученного раствора.

60. Смешали раствор нитрата серебра, концентрацией 1 % плотностью 1,01 г/см3 и раствор соляной кислоты концентрацией 5 % (плотность 1,02 г/см3) в соотношении 3:4. Рассчитать молярную концентрацию нитрат-иона в полученном растворе и ионную силу полученного раствора.

61. Какой объем раствора серной кислоты концентрацией 10 % (плотность 1,07 г/см3) потребуется для полной нейтрализации 0,5 л раствора NaOH концентрацией 16 г/л? Вычислить ионную силу конечного раствора.

62. Смешали 10 мл раствора HCl концентрацией 10 % (плотность 1,047 г/см3) и 10 мл раствора HCl концентрацией 6 % (плотность 1,028 г/см3). Рассчитать массовую долю и молярную концентрацию соляной кислоты в полученном растворе и его ионную силу.

63. Из раствора нитрата серебра концентрацией 2 % (плотность 1,015 г/см3) по реакции с хлоридом натрия образуется 14,35 г. хлорида серебра. Вычислить исходный объем раствора нитрата серебра и ионную силу конечного раствора.

64. Сколько миллилитров 0,5 н. раствора сульфата натрия нужно прилить к 100 мл раствора хлорида бария концентрацией 16 % (плотность 1,156 г/см3), чтобы полностью осадить сульфат-ионы? Найти ионную силу конечного раствора.

65. Металл вытеснил из 100 мл соляной кислоты 348 мл водорода, измеренного при 20°С и 99,5 кПа. Рассчитать нормальную концентрацию хлорида металла в полученном растворе и его ионную силу.

66. В раствор, содержащий нитрат калия, нитрат серебра и нитрат меди (II) массой 250 г поместили железные опилки, массой 1,25 г. Какие металлы и в каком количестве выделятся из раствора, если содержание солей металлов в исходном растворе следующее: нитрат калия 0,5 %, нитрат меди 0,94 %, нитрат серебра 1,021 %? Вычислить ионную силу конечного раствора.

67. К 20 мл 0,1 М раствора нитрата свинца (II) прилили 20 мл 0,15 н. раствора иодида калия. Найти массу образовавшегося осадка и вычислить ионную силу конечного раствора.

68. 1,546 г гидроксида железа (III) растворили в 300 мл азотной кислоты, концентрацией 10,5 г/л. Определить концентрацию нитрата железа (III) в полученом растворе и ионную силу этого раствора.

69. Смешали растворы хлорида железа (III) и гидроксида калия в объемном соотношении 1:1 (по 2 литра) и одинаковой концентрацией 1 г/л. Определить ионную силу полученного раствора.

70. К 150 мл 0,1 н. нитрата бария прилили 100 мл 0,1 н. раствора сульфата натрия. Определить массу сульфата бария и ионную силу получившегося раствора.

I.2. Кислотно-основные свойства растворов электролитов

Задание I.2.Решить задачи.

71 -105. Вычислить рН раствора сильного электролита в воде и в присутствии индифферентного электролита. . Плотность раствора принять равной 1.

Электролит 1 С1 Электролит 2 С2
71. Ba(OH)2 0,5 % NaCl 2 %
72. Ba(OH)2 0,1 г/л CaCl2 3 %
73. Ca(OH)2 0,07 % Ca(NO3)2 3 %
74. Ca(OH)2 0,02 н. BaCl2 5 %
75. KOH 4 г/л Ba(NO3)2 3 г/л
76. LiOH 0,008 н. Na2SO4 4 г/л
77. NaOH 3 % NaNO3 5 %
78. NaOH 1 % KCl 5 %
79. RbOH 0,5 % KNO3 3 %
80. RbOH 4 г/л CaCl2 3 %
81. RbOH 0,3 г/л Ca(NO3)2 5 %
82. Sr(OH)2 5×10-4 М KCl 3 %
83. Sr(OH)2 0,05 г/л KNO3 1,5 %
84. H2SO4 0,1 н. LiCl 2 г/л
85. H2SO4 0,5 % LiNO3 3 г/л
86. H2SO4 0,005 М Al2(SO4)3 5 г/л
87. H2SO4 0,6 % FeCl3 5 г/л
88. HCl 1,36 % KCl 3 %
89. HCl 1,0 % KNO3 5 %
90. HCl 0,3 % CaCl2 5 %
91. HCl 0,01 н. Ca(NO3)2 3 %
92. HCl 0,006 М BaCl2 3 %
93. HBr 0,01 н. LiCl 3 %
94. HI 0,006 М LiNO3 1,5 %
95. HI 0,2 % Al2(SO4)3 2 г/л
96. HClO4 0,3 % FeCl3 3 г/л
97. HClO4 0,8 % CuSO4 5 г/л
98. HNO3 3 % Cu(NO3)2 5 г/л
99. HNO3 0,7 % NaCl 3 г/л
100. HNO3 0,05 г/л NaNO3 4 г/л
101. HNO3 0,6 г/л KCl 2 г/л
102. HNO3 0,06 г/л KNO3 1 г/л
103. H2S2O3 5 г/л KCl 4 г/л
104. H2S2O3 6 % KNO3 2 г/л
105. H2S2O3 0,001 н. LiCl 1 г/л

106 – 140. Вычислить рН раствора по приведенным ниже данным.

106. Если к 20 л раствора соляной кислоты концентрацией 10 % (d = 1,047 г/мл) было добавлено 5 м3 раствора гидроксида кальция концентрацией 0,02 экв/л.

107. Содержащего 4 г KOH и 5 г NaOH в одном литре воды.

108. Содержащего 0,005 моль/л серной кислоты и 0,006 моль/л соляной кислоты.

109. После выщелачивания руды при следующих условиях: масса руды – 1 т, в ней содержится 6 % Cu4(SO4)(OH)6; ω(H2SO4)=3 %, d=1,03 г/мл, V(H2SO4)=3 м3.

110. Полученного при разбавлении 20 л 10 % соляной кислоты (d=1,047 г/мл) пятью кубометрами воды.

111. Азотнокислых стоков, если 10 л 5 % азотной кислоты сброшены в резервуар с водой емкостью 5 м3.

112. 10 м3 раствора, содержащего по 50 г серной и дихромовой кислот.

113. Содержашего дихромовую кислоту (2 мг/мл Cr (VI)) и азотную кислоту (1 мг/мл).

114. После смешивания 10 л соляной кислоты концентрацией 3,65 г/л и 15 л гидроксида натрия концентрацией 2 г/л.

115. Найти объем раствора 0,005 М соляной кислоты, если после добавления к нему 0,5 л раствора гидроксида бария концентрацией 0,003 моль/л получился раствора с рН = 4,03.

116. После смешивания 2 л серной кислоты концентрацией 0,01 моль/л и 3 л щелочи с рН=12,5.

117. После смешивания 0,2 л 0,5 н. HCl и 0,3 л 0,3 М NaOH.

118. После смешивания 200 мл 0,5 н. раствора серной кислоты и 300 мл раствора едкого натра с концентрацией 0,3 моль/л.

119. После смешивания 100 мл 0,015 н. раствора и 100 мл 0,09 н. раствора серной кислоты.

120. После смешивания 20 мл 0,5 н. раствора соляной кислоты и 10 мл 0,2 н. раствора гидроксида бария.

121. После смешивания 100 мл 0,2 % раствора едкого натра (NaOH) и 200 мл 0,1 % раствора NaOH.

122. После смешивания 200 мл 0,7 н. раствора серной кислоты и 3000 г воды.

123. После смешивания 8 л раствора соляной кислоты концентрацией 0,04 моль/л и 11 л раствора ее же концентрацией 2 г/л.

124. После смешивания 30 мл раствора, содержащего 0,109 г серной кислоты в 100 мл раствора, и 40 мл раствора NaOH, содержащего 0,098 г гидроксида натрия в 100 мл раствора.

125. После смешивания 10 мл 0,12 % раствора HCl и 10 мл 0,076 % раствора HCl.

126. После смешивания 10 мл 6 % раствора соляной кислоты плотностью 1,03 г/см3 и 10 мл 1 % раствора гидроксида бария плотностью 1,0 г/см3.

127. После смешивания 31 мл 0,16 н. раствора щелочи и 317 мл 0,02 н. раствора серной кислоты.

128. После смешивания 150 мл 0,4 н. раствора соляной кислоты и 250 мл 0,2 н. раствора гидроксида натрия.

129. После смешивания 8 л раствора соляной кислоты концентрацией 4 моль/л и 11 л раствора ее же концентрацией 2 г/л.

130. После смешивания 500 мл раствора силиката натрия концентрацией 11 г/л и 500 мл раствора серной кислоты концентрацией 4,6 г/л. Дополнительно определить массу оксида кремния.

131. После смешивания 500 мл раствора гидроксида бария концентрацией 1,5 % (плотность 1,008 г/см3) и 300 мл 2 % раствора серной кислоты (плотность 1,012 г/см3).

132. После смешивания 1,5 л раствора гидроксида натрия концентрацией 4 г/л и 0,5 л гахзообразного хлороводорода (н.у.).

133. После смешивания 1,5 л 0,2 М раствора гидроксида кальция и 0,5 л углекислого газа (25°С, 1 атм.).

134. После смешивания 45 мл 0,3 н. раствора соляной кислоты и раствора, содержащий 0,32 г гидроксида натрия в 40 мл.

135. После смешивания одного литра раствора, содержащего 1,4 г гидроксида калия, и 60 мл 0,5 н. раствора серной кислоты.

136. После смешивания 1 л раствора азотной кислоты, содержащего 0,882 г кислоты и 40 мл 0,4 н. раствора гидроксида натрия. Прошла ли нейтрализация?

137. После смешивания 15 миллилитров 1 н. раствора едкого натра и 320 мл 0,1 М раствора серной кислоты.

138. После смешивания 20 мл раствора сульфата меди, в 1 л которого содержится 10 г меди, и 100 миллилитров 0,1 н. едкого натра (NaOH).

139. После смешивания 4 мл серной кислоты концентрацией 40 % (плотность 1,303 г/см3) и 200 мл серной кислоты, концентрацией 0,001 моль/л.

140. Сколько граммов гидроксида железа выпадет в осадок, если к 500 мл 0,2 н. раствора хлорида железа (III) (плотность 1,03 г/см3) добавить 5 г гидроксида натрия? Вычислить pH раствора после реакции.

  1.  Аналитическая химия

II.1 Качественный анализ

Задание II.1.Решить задачи.

1. Для смеси катионов составить схему качественного анализа и написать реакции: а) разделение на отдельные ионы; б) обнаружение каждого иона;

Катионы
1 K+, Al3+, Bi3+, Cu2+
2 Ag+, Ba2+, Mn2+, Zn2+
3 Pb2+, Al3+, Sr2+, K+
4 Hg22+, Ba2+, Zn2+, Mg2+
5 Ag+, Zn2+, Ni2+, Al3+
6 Pb2+, Ca2+, Cr3+, Cu2+
7 K+, Bi3+, Co2+, Fe3+
8 Ag+, Ba2+, Al3+, Cr3+
9 Cu2+, Ba2+, Cr3+, Mn2+
10 Ni2+, Cu2+, Mg2+, K+
11 Ag+, Ba2+, Bi3+, Mg2+

 

12. Составить схему качественного анализа катионов пробы раствора сернокислого выщелачивания огарков сульфатизирующего обжига пиритных концентратов. Кроме пирита FeS2, концентрат содержит халькопирит CuFeS2, сфалерит ZnS, пентландит (Fe,Ni)9S8, алюмонатриевые силикаты, а также изоморфные примеси в сульфидах кобальта и серебра.

13. Составить схему качественного анализа катионов пробы объединенных отработанных растворов электролитов гальванического производства, включающих операции меднения, хромирования, никелирования и травления стали. Исходные растворы электролитов, кроме основных компонентов, в качестве специальных добавок содержат гидросульфат аммония. Отработанные растворы после операций хромирования содержат хромат-ионы, после операции травления стали - ион Fe3+.

14. Составить схему качественного анализа пробы раствора, полученного разложением комплексной окисленной железной руды, содержащей, кроме оксида железа, апатитCa3(PO4)2, нефелин Na3K(AlSiO4)4, англезит PbSO4 и смитсонит ZnCO3.

15. Составить схему качественного анализа пробы раствора, полученного разложением полиметаллической сульфидной руды, содержащей халькопирит CuFeS2, галенит PbS, сфалерит ZnS, пирит FeS2, а также барит BaSO4, алюмосиликаты калия и натрия, кальцит CaCO3, металлическое серебро.

16. Составить схему качественного анализа пробы раствора, полученного разложением сульфидной медно-никелевой руды, содержащей халькопирит CuFeS2, пентландит (Fe,Ni)9S8, пирротин FeS, кальцит CaCO3, магнезит MgCO3, алюмосиликат калия, самородное серебро и изоморфный (в пентландите) кобальт.

17. Составить схему качественного анализа пробы раствора, полученного разложением сульфидной свинцово-цинковой руды, содержащей галенит PbS, сфалерит ZnS, пирит FeS2, барит BaSO4, кальцит CaCO3, магнезит MgCO3 и алюмосиликат натрия.

18. Составить схему качественного анализа пробы раствора, полученного разложением апатито-нефелиновой руды, содержащей апатит Ca3(PO4)2, нефелин Na3K(AlSiO4)4, магнезит MgCO3, гематит Fe2O3, хромит FeCr2O4.

19. К пробе сточной воды добавили 2 н. раствор соляной кислоты, выпавший белый осадок отфильтровали. Фильтрат нейтрализовали до рН»5 и добавили раствор гексанитрокобальта (III) натрия. Получили темный осадок. Осадок на фильтре обработали горячей водой, он не растворился, но под действием раствора аммиака почернел. Какие катионы присутствовали в пробе? Составьте схему анализа.

20. В анализируемой пробе после вскрытия руды предполагается наличие ионов алюминия, кальция, магния, железа и цинка. Как проверить их присутствие в растворе? Составьте схему анализа.

21. Как проверить присутствие цинка в растворе после вскрытия полиметаллической руды, содержащей медь, железо, свинец, кальций и кадмий? Составьте схему анализа.

22. В «легком» сплаве на основе алюминия могут находиться цинк, медь, железо, марганец, магний. Подтвердите наличие этих металлов в сплаве. Составьте схему анализа.

23. В «тяжелом» сплаве на основе свинца могут находиться железо, медь, цинк и серебро. Подтвердите наличие этих металлов в сплаве. Составьте схему анализа.

24. Дана проба сточной воды. При действии этой воды на пластину металлической меди образовалось блестящее пятно. К части сточной воды добавили соляной кислоты и выпал белый осадок. Под действием гидроксида он почернел. После фильтрации белого осадка к части образовавшегося раствора добавили сульфат натрия и выпал белый осадок, другой частью раствора подействовали на медную пластину, образовалось блестящее пятно. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

25. Дана проба сточной воды. К части пробы добавили соляную кислоту, выпал белый осадок, растворимый в горячей воде. После фильтрации белого осадка к полученному раствору добавили некоторое количество щелочи, выпал белый осадок, который затем растворился в ее избытке. Часть полученного раствора подкислили до рН»5 и добавили раствор алюминона, образовался красный осадок. К другой части подкисленного раствора добавили сульфид натрия, образовался белый осадок. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

26. К отдельным пробам сточной воды добавили раствор соляной кислоты, осадок не выпал, добавили серной кислоты и этиловый спирт, осадок не выпал, добавили избыток щелочи, выпал белый осадок. Осадок отфильтровали. Полученный фильтрат подкислили до рН»2 и добавили сульфид натрия, выпал белый осадок. Предыдущий осадок растворили в соляной кислоте, к полученному раствору добавили сульфид натрия, выпал желтый осадок. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

27. Дана проба сточной воды. К части пробы добавили соляную кислоту, выпал осадок. После фильтрации осадок на фильтре промыли горячей водой. К полученному фильтрату добавили раствор иодида калия, при этом не обнаружили выпадение никакого осадка. К промытому горячей водой осадку на фильтре добавили концентрированный раствор гидроксида аммония. На фильтре осадок потемнел, а к полученному фильтрату добавили соляной кислоты и образовался белый осадок.

К фильтрату, полученному после добавления соляной кислоты к исходной пробе сточной воды, добавили серной кислоты. При этом не обнаружили выпадения осадка, затем добавили этиловый спирт и перемешали при нагревании, образовался осадок белого цвета. Полученный осадок отфильтровали. Несколько капель фильтрата нанесли на медную пластину, на пластине образовалось светлое пятно. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

28. К части анализируемого раствора, имеющего рН»7, добавили дигидроантимонат калия, образовался белый кристаллический осадок. К другой части раствора добавили соляную кислоту - осадка не обнаружили, затем добавили раствор серной кислоты, осадок тоже не выпал. К полученному раствору добавили этиловый спирт, нагрели и тщательно перемешали, осадок снова не выпал. Затем к раствору добавили 30 %‑ый раствор пероксида водорода и гидроксид натрия до рН = 11,5, осадок опять не образовался. Полученную смесь нагрели до Т»80 оС и тщательно перемешали до прекращения выделения пузырьков газа. После этой операции раствор разделили на две части. К первой части добавили раствор серной кислоты и получили оранжево-красный раствор. К другой части раствора добавили некоторое количество хлорида аммония и соляной кислоты до рН=8-9, затем добавлением избытка хлорида аммония подкислили раствор до рН»5. Образования осадка не обнаружили. После этого к раствору добавили сероводородную воду до рН»2, образовался белый осадок. Какие катионы присутствовали в анализируемом растворе? Составьте схему анализа.

29. К пробе сточной воды добавили раствор соляной кислоты, выпал белый осадок. Осадок отфильтровали и обработали горячей водой, после чего он полностью растворился. К фильтрату, полученному после удаления белого осадка добавили серную кислоту, затем этиловый спирт и перемешали при нагревании. Выпадение осадка не обнаружили. К полученному кислому раствору добавили избыток щелочи, выпал осадок, который отфильтровали. Осадок растворили в азотной кислоте при нагревании и добавили концентрированный раствор гидроксида аммония, образовался ярко синий раствор без осадка. К фильтрату, полученному после удаления осадка, образовавшегося в щелочной среде, добавили соляной кислоты и ацетатный буфер до рН»5, а затем - раствор алюминона. Образовался красный осадок. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

30. К отдельным пробам сточной воды, имеющей рН»5, добавили следующие реагенты:

‑ избыток раствора гексанитрокобальтата (III) натрия - выпал желтый осадок;

‑ раствор соляной кислоты - осадок не выпал;

‑ раствор серной кислоты, а затем этиловый спирт - осадок не выпал;

‑ концентрированный раствор гидроксида аммония - образовался осадок и ярко-синий раствор.

После добавления гидроксида аммония осадок отфильтровали, а затем растворили в азотной кислоте при нагревании. К полученному раствору добавили гидроксид аммония и хлорид аммония до рН»9, осадок не выпал, а затем добавили гидрофосфат натрия - выпал белый кристаллический осадок. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

31. Как проверить наличие никеля после вскрытия руды, содержащей медь, кобальт, кадмий, кальций и серебро? Составьте схему анализа.

32. Как проверить наличие кобальта в сточной воде, содержащей медь, железо (III), никель, свинец и кальций. Составьте схему анализа.

33. К отдельным пробам нейтральной сточной воды добавили следующие реагенты:

‑ реактив Несслера (щелочной раствор тетраиодомеркурата калия) - образовался оранжевый осадок;

‑ раствор соляной кислоты - образовался белый осадок, который полностью растворяется в горячей воде;

- раствор серной кислоты, а затем этиловый спирт - осадок не выпал.

Затем всю оставшуюся пробу воды обработали соляной кислотой, осадок отфильтровали, а фильтрат обработали 30 % раствором пероксида водорода и гидроксида натрия до рН=11 при нагревании и перемешивании до полного выделения газа. Образовавшийся осадок коричневого цвета отфильтровали и растворили в азотной кислоте при нагревании. К полученному раствору добавили роданид аммония - образовался красный раствор. К фильтрату, имевшему желтую окраску, после удаления коричневого осадка добавили 3 % раствор пероксида водорода, амиловый спирт и избыточное количество серной кислоты. После интенсивного перемешивания полученная смесь расслоилась на два жидких слоя, из которых верхний окрашен в синий цвет. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

34. К части пробы нейтрализованной сточной воды добавили раствор дигидроантимоната калия - выпал белый кристаллический осадок. К другой части пробы добавили соляной кислоты - осадок не выпал, затем добавили серной кислоты - осадок не выпал, а потом - этиловый спирт и смесь тщательно перемешали при нагревании. После последней операции выпал белый осадок, который удалили фильтрованием. Полученный фильтрат обработали концентрированным раствором щелочи, а затем отфильтровали с получением осадка и раствора I. Осадок растворили в азотной кислоте и добавили сухой висмутат натрия, образовался розовый раствор. Раствор I нейтрализовали соляной кислотой до рН=2 и добавили сульфид натрия, образовался белый осадок. Какие катионы присутствовали в сточной воде? Составьте схему анализа.

35. Составьте схему качественного анализа пробы раствора, полученного разложением медно-никелевой руды, содержащей талнахит, пентландит, троилит, кальцит, алюмосиликаты калия, натрия и магния, а также микропримеси кобальта, кадмия и серебра.

36. Как проверить наличие меди и кобальта после вскрытия полиметаллической руды, содержащей галенит, сфалерит, пирит, барит и кальцит. Составьте схему анализа.

37. Как определить качественный состав пиритного концентрата, выделенного из железной руды, если он может содержать кроме основного металла - железа, также медь, никель, кобальт, серебро, алюминий и кальций. Составьте схему анализа раствора после вскрытия пиритного концентрата.

II.2 Количественный анализ

Задание II.2.Решить задачи.

38. Из аликвотной части объемом 50 мл раствора сульфата алюминия осадили сульфат-ион в виде сульфата бария. Вес сухого осадка равен 0,2640 г. Вычислить концентрацию в г/л и в моль/л сульфат-ионов и сульфата алюминия.

39. Из навески чугунных стружек массой 2,851 г, после соответствующей обработки, получили 0,0824 г диоксида кремния. Вычислить процентное содержание кремния в чугуне.

40. При анализе навески апатита массой 0,1112 г получили 0,9926 г сухого осадка (NH4)3PO4×12MoO3. Вычислить процентное содержание Р2О5 в апатите.

41. Из навески известняка массой 0,5210 г, после растворения её, соответствующих осаждений и прокаливания, получили 0,2218 г СаО и 0,0146 г Mg2P2O7. Вычислить процентное содержание карбонатов кальция и магния в известняке.

42. Из навески 0,8325 г латуни, состоящей из меди, олова и цинка, при анализе было получено 0,6728 г CuCNS и 0,0423 г SnO2. Вычислить процентный состав латуни.

43. В навеске 0,1341 г сильвинита определяли содержание калия осаждением его в форме KСlO4. Вес сухого осадка равен 0,2206 г. Вычислить процентное содержание хлорида калия в сильвините.

44. При анализе сурьмяного блеска Sb2S3 была взята навеска массой 0,1872 г. Вся сера была переведена в сульфат-ион, который осадили в виде BaSO4, масса которого оказалась равной 0,3243 г. Вычислить процентное содержание Sb2S3 в руде.

45. При анализе навески 0,4620 г пирита получили 1,774 г сульфата бария. При параллельном анализе второй навески 0,4224 г получили 1,617 г сульфата бария. Каково среднее содержание серы в пирите?

46. Навеску цемента массой 1,861 г растворили и осадили кальций. Из 250 мл полученного фильтрата отобрали аликвоту объемом 100 мл и осадили MgNH4PO4. После прокаливания получили весовую форму Mg2P2O7, масса которой была равна 0,2516 г. Вычислить процентное содержание оксида магния в цементе.

47. При определении содержания оксида алюминия в железной руде осаждением AlPO4 вместе с алюминием осаждаются фосфаты титана Ti2P2O9 и циркония ZrP2O7. Вычислить процентное содержание оксида алюминия в руде, если из навески руды массой 0,2430 г получили осадок фосфатов алюминия, титана и циркония общей массой 0,2512 г, а при дальнейшем анализе руды в ней было найдено 2,40 % титана и 0,050 % циркония.

48. При анализе навески фосфорита массой 0,2140 г получено 0,1536 г Mg2P2O7. Вычислить процентное содержание Р2О5 в фосфорите.

49. Навеску стали массой 1,086 г растворили и осадили диметилглиоксимат никеля. Масса высушенного осадка составила 0,2136 г. Вычислить процентное содержание никеля в стали. Ответ: 4,00 %.

50. Какова молярная концентрация серной кислоты, если на титрование 0,4519 г буры Na2B2O7×10H2O израсходовали 16,43 мл этого раствора.

51. Из 6,227 г буры Na2B2O7×10H2O приготовили 250 мл раствора. На титрование аликвоты 25 мл этого раствора израсходовали 24,17 мл соляной кислоты. Определить нормальную концентрацию растворов буры и соляной кислоты.

52. 20 мл 0,2215 н. раствора соляной кислоты требуют для нейтрализации 21,40 мл раствора Ва(ОН)2, а 25 мл уксусной кислоты нейтрализуются 22,55 мл того же раствора. Вычислить нормальную концентрацию уксусной кислоты.

53. Рассчитать процентное содержание карбоната натрия в растворе с плотностью 1,05 г/см3, если на титрование аликвоты 20 мл по метиловому оранжевому израсходовали 33,45 мл 0,57 н. раствора соляной кислоты.

54. Рассчитать концентрацию серной кислоты в г/л, если на титрование аликвоты 10 мл израсходовали 20,60 мл 1,01 н. раствора едкого натра.

55. Навеску массой 0,5 г смеси карбонатов натрия и калия растворили в мерной колбе на 100 мл. На нейтрализацию аликвоты объемом 10 мл по метиловому оранжевому израсходовали 3,95 мл 0,2 н. раствора соляной кислоты. Вычислить процентное содержание карбоната натрия в смеси.

56. Навеску массой 4,0 г нитрата аммония растворили в мерной колбе на 500 мл. К аликвоте 25 мл добавили 10 мл раствора формалина. На титрование азотной кислоты, выделившейся при взаимодействии нитрата аммония с формалином, израсходовали 24,25 мл 0,1 н. раствора едкого натра. Влажность нитрата аммония 2,2 %. Вычислить процентное содержание NH4NO3 и азота в нитрате аммония в пересчете на сухое вещество.

57. На титрование аликвоты ортофосфорной кислоты объемом 10 мл израсходовали 8,2 мл 0,1 н. раствора щелочи. Вычислить молярную концентрацию кислоты в пробе, если титрование вели до перехода окраски фенолфталеина из бесцветной в малиновую.

58. На титрование аликвоты серной кислоты объемом 10 мл израсходовали 13,4 мл 0,1 н. раствора щелочи. Вычислить молярную концентрацию кислоты.

59. На титрование аликвоты гидроксида бария объемом 10 мл израсходовали 24,6 мл 0,1 н. раствора соляной кислоты. Вычислить молярную концентрацию Ba(OH)2.

60. На титрование аликвоты раствора карбоната натрия объемом 10 мл израсходовали 14,2 мл 0,1 н. раствора серной кислоты. Вычислить нормальную и молярную концетрации карбоната натрия, если титрование вели до обесцвечивания розовой окраски фенолфталеина.

61. На титрование аликвоты раствора сульфата никеля (П) объемом 10 мл израсходовали 12,4 мл 0,05 М раствора трилона Б. Вычислить нормальную концентрацию сульфата никеля.

62. Сколько миллилитров раствора трилона Б с концентрацией 0,05 М будет израсходовано на титрование аликвоты объемом 10 мл раствора с концентрацией по сульфату цинка 0,14 н. и по хлориду меди (П) 0,08 М?

63. На титрование 50 мл раствора, содержащего соляную и фосфорную кислоту, израсходовано 25 мл 0.1 М раствора ги-дроксида натрия в присутствии метилового красного. Если продолжить титрование в присутствии тимолового синего, то расходуется еще 10 мл раствора гидроксида натрия. Рассчитайте концентрации соляной и фосфорной кислот.

64. Сколько граммов меди обнаружено в растворе, если на титрование этого раствора уходит 15,2 мл 0,03 М раствора ЭДТА в присутствии индикатора мурексида?

65. На титрование СdС12 при рН = 9,3 в присутствии эриохрома черного израсходовано 25,2 мл 0,05 М раствора ЭДТА, Рассчитать массу кадмия в растворе.

66. На титрование при рН = 2 раствора нитрата тория в присутствии пирокатехинового фиолетового израсходовано 15,2 мл 0,025 М раствора ЭДТА. Рассчитать массу тория в растворе.

67.Рассчитать концентрацию магния в воде (в ммоль/дм3), если при титровании 200 мл воды ЭДТА при рН = 9,7 с эриохромом черным до синей окраски израсходовано 25,15 мл 0,01512 М раствора.

68. Пробу соли аммония 1 г обработали избытком концентрированного NaOH. Выделившийся аммиак был поглощен 50 мл 1,051 М раствора НС1. Избыток кислоты оттитровали 25 мл раствора NaOH; T(NaOH) = 0,04 г/мл. Вычислить массовую долю аммиака в пробе соли.

69. Вычислить величину навески химически чистого СаСO3, если после обработки ее 50 мл 0,2 М раствора НС1 на титрование остатка кислоты израсходовано 10 мл раствора NaOH. Установлено, что на титрование 25 мл NaOH расходуется 24 мл НС1.

70. Для определения свободных жирных кислот (%) в мыле навеску его 4 г растворяют при нагревании с обратным холодильником в 200 мл этанола. Прибавляют фенолфталеин и титруют 0,01 М раствором КОН, израсходовав 3,80 мл этого раствора. Средняя молярная масса жирных кислот в мыле составляет 282 г/моль. Чему равна массовая доля свободных кислот?

71. Сколько 0,1056 М раствора КОН .(в мл) необходимо приба­вить к 1,2 г касторового масла для нейтрализации свободных жирных кислот, массовая доля которых составляет 1,5%? Средняя молярная масса кислот касторового масла равна 295 г/моль.

72. Вычислить массовую долю Na2O в образце технического NaOH, если навеску образца 0,1545 г оттитровали 15,25 мл 0,101 М раствора НС1.

 

                                                                                    

Литература                                         

1. 1. Золотов Ю.А. и др. Основы аналитической химии в 2-х книгах. Книга 2. Методы химического анализа. М.: Высшая Школа, 2004 г.

2. Харитонов Ю.Я. Аналитическая химия. М.: Высшая школа, 2005.

3. Васильев В.П. Аналитическая химия. М.: Дрофа, 2004.

4. Васильев В.П. Аналитическая химия. Лабораторный практикум. М.: Дрофа, 2004.

5. Неорганическая химия. Растворы. Сборник задач. Ред. Дибров И.А. СПб: Изд-во СПГГИ, 2007.

6. Краткий справочник физико-химических величин. Издание 9. ред. Равдель А.А., Пономарева А.М. СПб.: Специальная литература, 2003.

7. Аналитическая химия. Химические методы анализа. Ред. Петрухин О.М. М.: Химия, 1993.

8. Практикум по физико-химическим методам анализа. Ред. Петрухин О.М. М.: Химия, 1987.

Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. М.: Химия, 1990.

 

 

Содержание

I. Равновесия в растворах электролитов.. 3

I.1. Расчет ионной силы раствора............                                   3

I.2. Кислотно-основные свойства растворов электролитов.......... 8

II. Аналитическая химия..........................................     12

II.1 Качественный анализ.............................................................. 12

II.2 Количественный анализ.......................................................... 18

Литература.. 22

Содержание.. 23

 


Дата добавления: 2018-04-05; просмотров: 866; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!