Как работает алгоритм сжатия JPEG



Для эффективного сжатия данных необходимо прежде всего оценить характер вашего изображения. JPEG сжимает графические данные, опираясь на то, что видит человеческий глаз. Поэтому, чтобы помочь понять, как и что делает JPEG, я хотел бы дать вам общее представление о зрительном восприятии человека.

Сжатие JPEG происходит в несколько этапов. Цель - преобразовать графические данные таким образом, чтобы незначимая визуальная информация легко идентифицировалась и отбрасывалась. Такое сжатие "с потерями" отличается от большинства других подходов, используемых при работе с графическими форматами, которые стараются сохранить в неприкосновенности каждый бит изображения.

Цветовая модель

Первый шаг JPEG - выбор подходящего способа представления цветов. Цвета обычно задаются в трехмерной системе координат. Хорошо известная большинству программистов система описывает цвет, как комбинацию красного, зеленого и синего (RGB). К несчастью, с точки зрения возможности сжатия, это не лучший способ описания цвета. Проблема заключается в том, что все три компонента: красный, зеленый и синий - равнозначны. Однако переход к другой системе цветопередачи позволяет выделить некоторую более важную информацию.

Профессионалы используют две цветовые модели: HSL (Hue-Saturation-Lightness) и HSV (Hue-Saturation-Value). Интуитивно понятно, что яркостная компонента (Lightness) модели HSL и яркостная компонента (Value) модели HSV каждая по-своему определяют соотношение света и тени. Насыщенность (saturation) определяет уровень "чистого" цвета. Ненасыщенные цвета часто неформально называют "грязными" (greyish). Оттенок (Hue) - это то, что мы воспринимаем, как цвет предмета, например красный или серовато-зеленый. Здесь важно отметить удивительный факт: человеческое зрение более чувствительно к изменению освещенности, а не цвета как такового!

Различные реализации алгоритма сжатия JPEG используют различные цветовые системы. Используемая форматом JFIF система цветопередачи YCbCr во многом схожа со схемой, разработанной много лет назад для цветного телевидения.

Прореживание

Основная причина преобразования одной цветовой модели в другую заключается в необходимости выявления менее существенной для просмотра информации изображения. JPEG уменьшает количество информации о цвете. В то время как яркостная компонента передается с полным разрешением, цветоразностностные компоненты используют в два раза меньший диапазон значений. В результате этого простого шага объем данных уменьшается на треть.

С помощью прореживания (subsampling) регулируются цвета изображения цветного телевизора. Обычно в телевидение черно-белое изображение и информация о цвете передаются по отдельности. Причем информация о цвете передается в менее строгом виде, чем информация о яркости изображения.

Дискретное косинусное преобразование (DCT)

Каждая компонента цвета обрабатывается отдельно, как если бы они были не одним цветным, а тремя полутоновыми изображениями. Если вы посмотрите на детальное изображение с большого расстояния, то вы различите лишь общий тон картины. Например, "главным образом синий" или "преимущественно красный". Чем ближе вы будете подходить к изображению, тем больше деталей сможете различить. Для эмуляции этого эффекта JPEG использует один математический прием, называемый дискретным косинусным преобразованием (DCT). DCT преобразует информацию о пикселах в информацию об изменении пикселов. Первое, что может дать DCT - усредненный цвет области. Затем он все больше и больше уточняет детали.

Как в случае удаленного изображения, усредненное значение цвета представляет собой очень важную информацию об области изображения. Ваш глаз менее чувствителен к скорости изменения цвета, поэтому она не так важна. Преобразовав информацию о цвете подобным образом, мы выделяем ту информацию, которой можно пожертвовать.

Считается, что потери обусловливаются именно этим этапом. Если вы с помощью DCT закодируете изображение и затем с помощью функции обратного DCT восстановите его, то вы не получите абсолютно такой же набор бит. Однако эта ошибка - ошибка округления. Она возникает при выполнении арифметических действий и обычно не очень велика. Поэтому я предпочитаю думать об этапе DCT, как о действии, происходящем "в основном без потерь".

Для больших изображений обсчет DCT и обратного DCT весьма времяемкий процесс. Чтобы сократить время расчетов, JPEG разбивает изображение на мозаику размером восемь на восемь пикселов. Каждая из мозаик обрабатывается отдельно, что существенно сокращает необходимое для DCT время расчета. Проблема, возникающая при таком подходе, состоит в том, что после квантования (о котором пойдет речь в следующем разделе) границы этих квадратиков могут не совпадать и потому становятся видимыми при задании низкого значения параметра качества.

Квантование

Разработчиков JPEG прежде всего интересовали изображения фотографического качества (photographic, contnuous tone). Как правило, эти полутоновые изображения характеризуются мягкими переходами от одного цвета к другому. Для таких изображений низкочастотная (медленно изменяющаяся) компонента DCT важнее высокочастотной (быстро меняющаяся).

Термин квантование (quantization) означает просто "округление". JPEG отбрасывает некоторую графическую информацию за счет округления каждого члена DCT с различными весовыми коэффициентами, опираясь при этом на различные факторы. Высокочастотная компонента округляется сильнее низкочастотной. Например, низкочастотная компонента, которая хранит среднюю величину яркости, может быть округлена до значения, кратного трем, в то время как высокочастотная компонента может быть округлена до значения, кратного ста!

Операция квантования объясняет, почему сжатие JPEG в случае четких контуров приводит к образованию "дрожащих" линий. Контуры определяются высокочастотной (быстро меняющейся) пространственной компонентой. (На первый взгляд может показаться, что вы должны получить размытый контур, однако вспомните, что C в сокращении DCT обозначает косинус.)

Обычно цветовые плоскости квантуются гораздо грубее плоскостей яркости. Здесь правильный выбор цветовой модели помогает выявлять ту информацию, которую можно отбросить.

Сжатие

До сих пор, за исключением того случая, когда рассматривалась частота выборки из двух цветовых каналов, никакого сжатия не происходило. Все рассмотренные выше шаги - преобразование цветовых моделей, DCT и квантование - оставляли размер данных без изменений. Наконец мы добрались до последнего шага, во время которого с помощью стандартной техники сжатия без потерь действительно будет уменьшен размер данных.

Данные, разложенные по полочкам в ходе предыдущих шагов, могут быть сжаты более эффективно, чем необработанное сырье, которое представляют собой графические данные RGB. Причем ни один из сделанных шагов не был лишним, каждое изменение данных было направлено на то, чтобы более эффективно сжать окончательный вариант.

Изменение цветовой модели позволило проредить информацию каналов и затем более энергично их квантовать.

DCT дало возможность выделить высокочастотную пространственную компоненту. Высокочастотная компонента обычно имеет небольшие значения, в результате чего выходные данные на этапе DCT содержат несоразмерно много маленьких значений, облегчающих процесс сжатия.

В процессе квантования большая часть высокочастотной составляющей обнуляется, а остальная принимает конкретные значения. Сокращение числа различных значений также облегчает процесс сжатия данных.

Стандарт JPEG предоставляет два различных метода сжатия без потерь, которые могут быть использованы на последнем этапе. Сжатие Хаффмана (Huffman compression - это давно известный незапатентованный, легко программируемый алгоритм. В отличие от него более новый алгоритм арифметического кодирования (arithmetic coding) является объектом многочисленных патентов. (Поэтому не удивительно, что многие программы сжатия JPEG поддерживают только сжатие Хаффмана.)

При декодировании изображений JPEG необходимо совершить все эти шаги в обратном порядке. Поток данных вначале распаковывается, затем каждый блок 8ґ8 подвергается обратному DCT и наконец изображение конвертируется в соответствующую цветовую модель (обычно это RGB). Отметим, что информация, которая была обдуманно отброшена с помощью прореживания и квантования, никогда не восстанавливается. Однако если все было сделано корректно, потеря информации не вызовет никакого видимого ухудшения изображения.


Дата добавления: 2018-04-05; просмотров: 662; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!