Ядерный магнитный резонанс (ЯМР) и его медико- биолгические применения

СВОБОДНЫЕ РАДИКАЛЫ В БИОЛОГИЧЕСКИХ СИСТЕМАХ.

ОСНОВНЫЕ ТИПЫ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ОБНАРУЖЕНИЯ СВОБОДНЫХ РАДИКАЛОВ.

РОЛЬ СВОБОДНЫХ РАДИКАЛЬНЫХ ПРОЦЕССОВ В ПАТОЛОГИИ.

Свободные радикалы являются частицами, имеющими неспаренные электроны. Они могут быть положительно заряженными, отрицательно заряженными и нейтральными, и все три типа радикалов играют важную роль.

Радикалы имеют различную реакционную способность, зависящую, как и в случае других химических частиц, от температуры и концентрации окружающих молекул. Некоторые свободные радикалы удивительно стабильны. Примерами могут служить нитроксиды, которые используют в опытах со спиновыми метками и получают путем присоединения радикалов к нитронам.

Существует четыре типа процессов, в которых получаются свободные радикалы:

1) мономолекулярный гомолиз молекул, в которых имеются необычно слабые связи (так называемых инициаторов);

2) радиолиз;

3) фотолиз;

4) одноэлектронный перенос с ионов переходных металлов на органические соединения.

Кроме того, необходимо учитывать действие веществ, загрязняющих среду, таких, как озон, NO2, синглетный кислород. Эти вещества могут вести себя как инициаторы. Кроме того имеются ферментативные процессы, в которых могут образовываться свободные радикалы.

Обнаружение свободных радикалов возможно с помощью метода ЭПР и ЯМР.

С помощью ЭПР-спектроскопии в сочетании с другими методами исследования было установлено, что свободные радикалы и другие парамагнитные частицы (преимущественно металлокомплексы) принимают участие в важнейших процессах жизнедеятельности клетки. Кроме того, активные свободнорадикальные частицы могут возникать в окружающей живые организмы среде, например, при действии света или проникающей радиации. Эти радикалы оказывают различного рода нежелательное действие на организмы, что может приводить к патологическим изменениям или к гибели организмов. Например, получающийся в ферментативных реакциях гидроксильный радикал (OH) может в некоторых условиях вызывать патологические процессы.

 

 

Электронный парамагнитный резонанс (ЭПР).        Применение ЭПР-спектроскопии в биологии и медицине.

Основу магниторезонансных методов составляет поглощение энергии электромагнитных волн микроволнового и радиочастотного диапазонов в присутствии внешнего постоянного магнитного поля. Первые эксперименты на конденсированных образцах были ыполнены в СССР Завойским Е.К. в 1944 году. Дальнейшее быстрое развитие эти методы получили благодаря успехам, достигнутым в микроволновой технике (Блох и Парселл).

При помещении атома в магнитное поле каждый его энергетический уровень расщепляется на (2I + 1) подуровней. Расщепление энергетических уровней приводит и к расщеплению спектральных линий атомов, помещенных в магнитное поле. Это явление называют эффектом Зеемана.            

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Но такие переходы могут осуществляться индуцированно под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщепленными подуровнями. При этом наблюдается поглощение энергии электромагнитного поля, которое называют магнитным резонансом.

Ядра, как и электроны, характеризуются собственным моментом количества движения (спином), который квантуется (то есть принимает не все, а лишь определенные значения), а также обладают и магнитным моментом.

В зависимости от типа частиц-носителей магнитного момента - различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

ЭПР наблюдается в веществах, содержащих парамагнитные частицы: молекулы, атомы, ионы, радикалы, обладающие магнитным моментом, обусловленным электронами.

Поглощение (или резонанс) происходит, когда величина DE = hn, энергия поставляемая осциллирующим полем, становится равной величине hn = gmБBрез, т.е. hn = gmБ Bрез

где g - множитель Ланде (g-фактор), для заданного уровня энергииатома он зависит от квантовых чисел L, j, S;

mБ =     - магнетон Бора;

B - вектор магнитной индукции.

Магнитный резонанс наблюдается, если на частицу одновременно действует постоянное магнитное поле индукции Bрез. и электромагнитное поле с частотой n.

Из условия (1) видно, что обнаружить резонансное поглощение можно двумя путями: или при неизменной частоте плавно изменять магнитную индукцию, или при неизменной магнитной индукции плавно изменять частоту. Технически более удобным оказывается первый вариант.

Форма и интенсивность спектральных линий, наблюдаемых в ЭПР, определяются взаимодействием магнитных моментов электронов, в частности спиновых, друг с другом, с решеткой твердого тела и т.п.

Современная методика измерения ЭПР основывается на определении изменения какого-либо параметра колебательной системы, происходящего при поглощении электромагнитной энергии.

Прибор, используемый для этой цели, называют спектрометром ЭПР. Он состоит из:

1 - электромагнит, создающий сильное однородное магнитное поле, индукция которого может плавно изменяться;

2 - генератор СВЧ-излучения электромагнитного поля;

3 - специальная "поглощающая ячейка", которая концентрирует падающее СВЧ-излучение на образце и позволяет обнаружить поглощение энергии образцом (объемный резонатор);

4 - электронная схема, обеспечивающая наблюдение или запись ЭПР;

5 - образец;

6 - осциллограф.

Практически на ЭПР-спектрометрах регистрируют не кривую поглощения энергии (Eпогл (B)), а ее производную (то есть .

При помощи ЭПР можно изучать лишь объекты, обладающие неспаренными электронами; таковыми являются свободные радикалы и соединения, включающие ионы переходных металлов.

В зависимости от изучаемого объекта можно выделить три основных типа исследований:

- анализ свободных радикалов, в норме присутствующих в живом организме;

- исследования металлопротеидов (белков, содержащих ионы металлов, главным образом железа, меди и реже - марганца);

- исследования парамагнитных меток, искусственно вводимых в изучаемую систему, с тем чтобы установить механизм реакции или место связывания определенного соединения (например, выявить природу активного центра).

Метод спиновых меток - соединений, которые обычно представляют собой различные нитроксильные радикалы, является своего рода способом зондирования крупных молекул.

 

Ядерный магнитный резонанс (ЯМР) и его медико- биолгические применения.

Ядерным магнитным резонансом (ЯМР) называют избирательное поглощение электромагнитных волн определенной частоты веществом в постоянном магнитном поле, обусловленное переориентацией магнитных моментов ядер.

ЯМР наблюдается при выполнении условия (для свободных атомных ядер):

hn = gя mя В,

где gя - ядерный множитель Ланде,  mя - ядерный магнетон Бора.

ЯМР представляет собой весьма чувствительный метод; в ходе измерений образец не разрушается, а необходимые его количества очень малы. С помощью ЯМР исследуют самые разные процессы и определяют самые разные величины, например:

- кинетику роста кристаллов в растворах или, напротив, кинетику их растворения;

- процессы полимеризации, например, синтетических смол;

- процессы гидратации и дегидратации, определение содержания воды в различных веществах при данных условиях;

- определение содержания свободных радикалов (кинетика горения, анализ выхлопных газов);

- исследование вязкости смазочных материалов.

Этот метод применяется при контроле за пищевыми продуктами (определение содержания воды в продуктах, отношения содержания твердых ингредиентов к жидким в жирах и маргаринах, содержания ненасыщенных компонентов в жирах, установление причин порчи продуктов и поиски новых консервантов).

С его помощью исследуют структурированность внутриклеточной воды (в раковых клетках она меньше, чем в нормальных), пытаясь создать на этой основе эффективные методы диагностики определенных заболеваний. ЯМР применяют для определения содержания масла в зернах масличных культур (анализ, не разрушающий образцы), что позволяет отбирать лучшие зерна и увеличивает рентабельность производства масла. Этот метод находит применение при стереохимических исследованиях, помогая установить механизм некоторых реакций.

ЭПР и ЯМР.

При помещении атома в магнитное поле каждый его энергетический уровень расщепляется на (2I + 1) подуровней.

Расщепление энергетических уровней приводит и к расщеплению спектральных линий атомов, помещенных в магнитное поле. Это явление называют эффектом Зеемана.

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Но такие переходы могут осуществляться индуцированно под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой кванта, соответствующего разности энергий между расщепленными подуровнями. При этом наблюдается поглощение энергии электромагнитного поля, которое называют магнитным резонансом.

В зависимости от типа частиц - носителей магнитного момента - различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). ЭПР был открыт в 1944 году Е.К.Забойским. Он имеет место в вещества, содержащих парамагнитные части-

цы: молекулы, атомы, ионы, радикалы, обладающие магнитным моментом, обусловленным электронами. Возникающее при этом явление Зеемана объясняют расщеплением электронных уровней.

ЯМР был открыт в 1946 году Блохом и Парселом. Так как величина магнитного момента ядер приблизительно в тысячу раз меньше моментов электронных оболочек, то и частоты, отвечающие ядерному резонансу, будут в тысячу раз меньше по сравнению с частотами ЭПР.

Б × Н

При помощи ЯМР можно изучать строение молекул, их конформацию, распределение электронной плотности, слабые межмолекулярные взаимодействия (комплексообразование, сольватация, водородные связи),заторможенное внутреннее  вращение, таутомерное равновесие, а иногда и кинетику реакций. Обычно снимают спектры жидкостей или растворов, иногда газов.

Спектрометр ЯМР (ЭПР). В зазор между полюсами электромагнита, создающего однородное постоянное поле высокой напряженности, помещают ампулу с образцом. Ампула окружена катушкой, в которую пропущен переменный ток для создания радиочастотного электромагнитного поля. Далее теоретически безразлично, будем ли мы плавно изменять частоту этого электромагнитного поля n, оставляя постоянной напряженность магнитного поля Ho, либо, напротив, изменять Ho при постоянной n. Имеются приборы, основанные на обоих принципах. Если изменяют Ho, то при некотором значении Ho происходит поглощение энергии образцом, причем сила тока в катушке падает.

Это изменение усиливается и передается на самописец или осциллограф.

А- ампула с образцом

 М – магнит Г – генератор

У – усилитель

О – осциллограф С - самописец

Применения ЭПР - обнаружение и исследование свободных радикалов (например,  концентрацию их в воздушной среде), для изучения фотохимических процессов (фотосинтеза), для изучения биологических молекул методом спин-меток и др.

ЯМР - томография.

Картину пространственного расположения отдельных видов молекул в организме получают методом ЯМР-томографии (интроскопии). В его основе лежит создание с помощью последовательно приложенных градиентов магнитного поля по различным направлениям такого распределения магнитного поля, чтобы в данный момент различным элементам объема в пределах изучаемого сечения соответствовали слои, определенные для их местоположения частоты резонанса. Изменение градиентов во времени и обработка результатов изменений с помощью ЭВМ позволяют получить пространственную картину распределения молекул, содержащих, например, атомы водорода или фосфора (при наблюдениях магнитного резонанса от протонов или ядер фосфора) в пределах изучаемого сечения.

Достоинством метода ЯМР-томографии является его высокая чувствительность в изображении мягких тканей, а также высокая разрешающая способность, вплоть до долей миллиметра. В отличие от рентгеновской томографии ЯМР-томография позволяет получить изображение исследуемого объекта в любом сечении.

На этой основе могут быть реконструированы объемные изображения отдельных органов.


Дата добавления: 2018-04-05; просмотров: 598; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!