Порядок расчета сложной цепи постоянного тока



1. Произвольно выбирают направление токов во всех участках цепи.

2. Первое правило Кирхгофа записывают для (m-1) узла, где m - число узлов в цепи.

3. Выбирают произвольные замкнутые контуры, и после выбора направления обхода записывают второе правило Кирхгофа.

4. Система из составленных уравнений должна быть разрешимой: число уравнений должно соответствовать количеству неизвестных.

Шунты и добавочные сопротивления.

Шунт - сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.

Если амперметр рассчитан на силу тока I0 , а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

 

 

Добавочное сопротивление - сопротивление, подключаемое последовательно с вольтметром (гальванометром), для расширения его шкалы при измерении напряжения.

Если вольтметр рассчитан на напряжение U0 , а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

 

Условия существования электрического тока      

 

 

 

Если в разрыв электрической цепи, состоящей из источника тока и лампочки, включить металлический стержень, лампочка загорится. По цепи пойдет электрический ток.

Если в разрыв цепи включить стержень из эбонита, резины, лампочка не загорится. Тока в цепи не будет.

Если стержни двух электрометров зарядить, сообщив им одинаковые по величине и знаку потенциалы, а затем соединить их металлическим стержнем, стрелки электрометров останутся в первоначальном положении. Электрического тока в образовавшейся цепи не будет.

 

 

Если стержни электрометров зарядить, сообщив им разные потенциалы и вновь соединить их металлическим стержнем, заряды на стержнях начнут перераспределяться. Этот процесс будет идти до тех пор, пока не сравняются потенциалы стержней. Об этом можно судить по показаниям электрометров. До момента выравнивания потенциалов в цепи будет идти электрический ток.

Таким образом, для того, чтобы в цепи существовал электрический ток, в этой цепи должны бытьсвободные заряженные частицы и электрическое поле, способное их перемещать.

Заряженные частицы, согласно основам молекулярно-кинетической теории, участвуют в тепловом движении. В электрическом поле на тепловое движение частиц накладывается движение направленное. Под электрическим током понимают направленную составляющую движения заряженных частиц. За направление электрического тока принимают направление движения положительно заряженных частиц.

 

 


 

Условие возникновения электрического тока. Электрическое поле

Метки: словарь электромеханика, электрический ток, электрическое поле

Ток в проводнике, т. е. направленное движение зарядов, вызывается действием сил электрического поля. Электрическое поле — это особый физический процесс, происходящий в определенной области пространства и характеризующийся, в частности, возникновением механических сил, действующих на заряды, помещенные в пространстве, охватываемом полем.

Прежде чем рассматривать поле, вызывающее электрический ток, познакомимся с полем, создаваемым неподвижными зарядами.

Мы знаем, что между любыми зарядами существуют силы притяжения и силы отталкивания.
Это объясняется тем, что около любого заряда существует электрическое поле.

Представим себе, что в поле, созданное неподвижными зарядами, внесен пробный заряд q0 (рис. 1), т. е. заряд, который настолько мал, что практически не изменяет ранее существовавшее поле.

Обследуя при помощи таких зарядов поле, мы убедимся, что сила, действующая на пробный заряд в электрическом поле, пропорциональна величине пробного заряда.
Однако при одной и той же величине пробного заряда сила, действующая на него в разных точках одного и того же поля, имеет разную величину. Следовательно, сила поля зависит от интенсивности поля в той точке, где расположен пробный заряд.

Величину, характеризующую интенсивность поля, называют напряженностью поля.
Напряженность поля численно равна отношению силы, действующей на пробный положительный заряд в данной точке поля, к величине этого заряда.

Направление напряженности поля совпадает с направлением силы, действующей на положительный пробный заряд в данной точке.

Рис. 1

Зная напряженность поля, мы можем определить величину силы, действующей на любой заряд в данной точке. Если буквой Е обозначить напряженность поля в данной точке, а буквой q—величину пробного заряда, то сила F, действующая на заряд, может быть определена по формуле F = E*q.

На рис. 1 показаны силовые линии поля около двух разноименно заряженных тел. Силовые линии начинаются у положительного заряда и кончаются у отрицательного.

Они представляют собой пути следования пробного положительного заряда (при медленном движении) в электрическом поле. Поле около неподвижных заряженных тел называетсяэлектростатическим.

 

Электрический ток

 

Электрическим током называется движение электрических зарядов (электронов в металлах, электронов и ионов в жидкостях и газах) под действием электрического поля.

Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.

За направление тока принято направление положительного заряда.

 

Условия существования электрического тока (в дальнейшем просто тока в проводнике):

а) наличие свободных заряженных частиц;

б) наличие электрического поля (разности потенциалов на концах проводника).

 

Действия электрического тока:

а) ТЕПЛОВОЕ – нагревание проводника, по которому идет ток;

б) ХИМИЧЕСКОЕ – изменение химического состава проводника (электролиз и сопутствующие ему явления);

в) МАГНИТНОЕ – силовое воздействие на другие проводники с током и намагниченные тела (магнетики).

 

Основные характеристики электрического тока:

а) сила токаI – численно равна количеству электричества (заряду) Q, протекающего по проводнику за время t:

I =

 

В зависимости от величины и направления токи бывают: постоянные, переменные, пульсирующие и другие. Будем рассматривать только постоянные токи I = const.

Ток измеряется прибором – амперметром, который включается в цепь последовательно проводнику (сопротивлению).

б) напряжениеU – равно разности потенциалов на участке цепи.

Напряжение измеряется прибором – вольтметром, который включается параллельно проводнику (сопротивлению);

в) сопротивлениеR проводника.

Сопротивление зависит:

1. От длины проводника ℓ, его сечения S и материала (характеризуется удельным сопротивлением проводника ρ):

 

2. От температуры t°С (или Т): R = R0 (1 + αt),

где R0 – сопротивление проводника при 0°С,

α – температурный коэффициент сопротивления.

3. Проводники могут соединяться последовательно и параллельно.

 

Соединение Последовательное Параллельное
Сохраняющаяся величина I1 = I2 = … = In I = const U1 = U2 = …Un U = const

Суммируемая величина

напряжение cила тока
Результирующее сопротивление

 

г) плотность токаj – физическая величина, определяемая силой тока I проходящего через единицу площади поперечного сечения S проводника:

j =

д) электрическая сила (ЭДС) ε – физическая величина, определяемая работой сторонних (неэлектрических) сил Аст по перемещению единичного положительного заряда q:

Если в цепи на носители тока действуют силы электрического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способно создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Источники тока также можно соединить последовательно и параллельно:

1. При последовательном соединении источников:

εпосл = ε·n,

rпосл = r·n,

где ε – ЭДС одного источника,

r – сопротивление одного источника,

n – число источников.

2. При параллельном соединении n одинаковых источников:

εпар = ε,

Элементы электрических цепей и сами электрические цепи изображают схематически следующим образом:

 

– внешнее сопротивление проводника (участок электрической цепи без ЭДС)
– амперметр и его включение в цепь;
– вольтметр и его включение в цепь;
– источник тока (источник ЭДС) с внутренним сопротивлением.
– последовательное соединение сопротивлений и источников тока.
– параллельное соединение сопротивлений и источников тока.
– полная электрическая цепь.

 

Для решения задач по расчету электрических цепей используется закон Ома:

1. Закон Ома для участка цепи (без ЭДС):

или ,

где – удельная проводимость проводника,

Е – напряженность электрического поля в проводнике.

2. Закон Ома для полной цепи:

где R – внешнее сопротивление цепи,

r – внутреннее сопротивление источника тока,

R + r – называется полным сопротивлением цепи.

Следствия:

а) если R → 0, источник замкнут накоротко:

где Iкз – ток короткого замыкания;

б) если R → ∞, цепь разомкнута:

I = 0; U = ε,

т.е. ЭДС источника численно равна напряжению на его зажимах при разомкнутой внешней цепи.

Для расчетов полных электрических цепей полезно знать следующие величины:

а) полная мощность, развиваемая источником:

 

б) полезная мощность (выделяемая на внешнем сопротивлении):

 

в) мощность потерь: Pпотерь = Pu – Pn = I2·r;

 

г) КПД источника:

 

Электрический ток I, проходя по участку цепи без ЭДС с сопротивлением R, совершает работу А по перемещению электрических зарядов, которую можно рассчитать по формуле:

 

,

 

где U – напряжение на участке цепи,

t – время пропускания тока.

Мощность N тока, согласно определения, равна:

 

 

При протекании тока по проводнику он нагревается и в нем выделяется количество теплоты Q, которое без учета потерь рассчитывается по закону Джоуля-Ленца:

 

 


Дата добавления: 2018-04-04; просмотров: 834; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!