Этап. Заполнение окна Поиск решения



Выбрать в пункте меню Сервис команду Поиск решения, поставить курсор в поле целевой функции, выделить ячейку F3в форме (или ввести F3 с клавиатуры), поставить переключатель в положение "Максимальному значению" (см. Рис. 6.1). В поле "Изменяя ячейки" ввести$В$2:$Е$2(с клавиатуры или протащив мышью).

Нажать клавишу "Добавить", в окне "Добавление ограничения» в поле "Ссылка на ячейку" ввести F4, выбрать через "стрелка вниз" знак "<=", в поле справа ввести Н4(Рис. 6.2).

Аналогично через "Добавить" ввести F5<=H5, F6<=H6 для системы ограничений (2), а также B2>=0, C2>=0, D2>=0 и Е2>=0.

Также необходимо добавить ограничения для получения целочисленных величин по количеству товаров: B2=цел, C2=цел, D2=цел и Е2=цел.

После ввода последнего граничного условия вместо "Добавить" нажать клавишу ОК, появится окно "Поиск решения".

Для изменения или удаления ограничений и граничных условий используются клавишиИзменить, Удалить.

 

Этап. Параметры поиска

В окне "Поиск решения" нажать клавишу "Параметры", выбрать по умолчанию Максимальное время – 100 с.(может быть до 2^15=32767 c.> 4 час.), число итераций – 100 (для большинства задач это количество просчётов подходит с большим запасом), установить флажок в строке "Линейная модель", нажать ОК, в появившемся окне Поиск Решения нажатьВыполнить (рис. 6.3).

 

Рисунок 6.3 – Диалоговое окно Параметры поиска решения

 

Результаты поиска решения с таблицей результатов:

 

  A B C D E F G H
1 Переменная X1 X2 X3 X4 Формула Знак Св.член
2 Значение 10 0 6 0      
3 Коэф. ЦФ 60 70 120 130 1320 max  
4 Трудовые 1 1 1 1 16 <= 16
5 Сырьевые 6 5 4 1 84 <= 110
6 Финансы 4 6 10 13 100 <= 100

 

Таким образом оптимальный план Х(Х1,Х2,Х3,Х4)=(10,0,6,0) при минимальном использовании ресурсов

– Трудовые – 16 (У1)

– Сырьевые – 84 (У2)

– Финансы – 100 (У3)

даёт максимум прибыли F в 1320 руб.

Вывод: Максимальная прибыль F в 1320 руб. получается при выпуске только товаров Х1 и Х3 в количестве 10 и 6 штук соответственно, товары Х3 и Х4 выпускать не нужно (это приведёт к снижению прибыли). Трудовые (У1) и финансовые (У3) ресурсы используются полностью, по сырьевым ресурсам (У2) есть запас в 110-84 = 26 ед.

Кроме того, это означает, что изменение трудовых (У1) и финансовых (У3) ресурсов приведёт к изменению прибыли F, а изменение сырьевых ресурсов (У2) – нет.

Разности между плановыми ресурсами и использованными являются двойственными переменными У1, У2 и У3 сопряжённой задачи линейного программирования. В данном случае У1 = У3 = 0, а У2 = 26 ед. Таким образом, ресурс У2 можно уменьшить на 26 ед., тогда план по сырью тоже будет оптимальным.

Задача 2. Задача об оптимальной диете

Имеется n видов продуктов питания, в которых содержится m типов питательных веществ (белки, жиры, углеводы). В одной весовой единице продукта i-го типа (i  {1, 2, ..., n}) содержится аi единиц питательного вещества j-го вида (j  {1, 2, ..., m}). Известна минимальная суточная потребность bj (j  {1,2,..., т}) человека в каждом из видов питательных веществ. Задана калорийность сi одной весовой единицы i-го продукта      (i принадлежит {1, 2, ..., n}).

Требуется определить оптимальный состав рациона продуктов, такой, чтобы каждое питательное вещество содержалось в нем в необходимом количестве, обеспечивающем суточную потребность человека, и при этом суммарная калорийность рациона была минимальной.

Ведем в рассмотрение следующие переменные: х – весовое количество продукта питания i-го типа в суточном рационе.

Тогда в общем случае математическая постановка задачи об оптимальной диете может быть сформулирована следующим образом:

                                                        (4)

где множество допустимых альтернатив ∆ß формируется следующей системой ограничений типа неравенств:

                                                  (5)

                                          x1, x2, …, xn ≥ 0                                    (6)

Для решения задачи об оптимальной диете с помощью программы MS Excel необходимо задать конкретные значения параметрам исходной задачи.

Для определенности предположим, что в качестве исходных типов продуктов рассматриваются: хлеб, мясо, сыр, бананы, огурцы, помидоры, виноград (n = 7), а в качестве питательных веществ рассматриваются белки, жиры, углеводы (m = 3).

Калорийность одной весовой единицы каждого из продуктов следующая: с1 = 2060, с2 = 2430, с3 = 3600, с4 = 890, с5 = 140, с6 = 230, с7 = 650. Содержание питательных веществ в каждом из продуктов может быть задано в форме нижеприведенной таблицы.

Минимальная суточная потребность в питательных веществах следующая: в белках b1 = 100, в жирах b2 = 70, в углеводах b3 = 400.

Для решения данной задачи c помощью программы MS Excel создадим новую книгу с именем Линейное программирование и изменим имя ее второго рабочего листа наЗадача о диете.

Таблица – Содержание питательных веществ в продуктах питания

 

Продукты / питательные вещества Хлеб ржаной Мясо баранина Сыр «Российский» Банан Огурцы Помидоры Виноград
Белки 61 220 230 15 8 11 6
Жиры 12 172 290 1 1 2 2
Углеводы 420 0 0 212 26 38 155

 


Дата добавления: 2018-04-05; просмотров: 100; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!