Геофизические методы в изучении структурных элементов земной коры



Разведочной геофизикой называют раздел геофизики, посвящённый изучению строения Земли с целью поиска и уточнения строения залежей полезных ископаемых, а также выявлению предпосылок для их образования. Разведочная геофизика проводится на суше, акватории морей, океанов и пресных водоемов, в скважинах, с воздуха и из космоса. Разведочная геофизика является важной составляющей геологоразведочного процесса благодаря высокой эффективности, надёжности, дешевизне и скорости проведения. К методам разведочной геофизики относят сейсморазведку, электроразведку на постоянном и переменном токе, магниторазведку, гравиразведку, геофизические исследования скважин, радиометрию, ядерную геофизику и теплометрию.

Сейсморазведка - раздел разведочной геофизики, включающий методы изучения строения Земли, основанные на возбуждении и регистрации упругих волн. Породы земной коры различаются по упругим свойствам — модулю Юнга, коэффициенту Пуассона, скорости продольных и поперечных волн и плотности. На границах слоев с различными упругими свойствами возникают вторичные волны, содержащие информацию о геологическом строении.

Гравиразведкой или гравиметрией называется геофизический метод, изучающий изменение ускорения свободного падения в связи с изменением плотности геологических тел. Гравиразведка активно применяется при региональном исследовании земной коры и верхней мантии, выявлении глубинных тектонических нарушений, поиске полезных ископаемых — преимущественно рудных, выделении алмазоносных трубок взрыва. Гравиразведка позволяет изучать состав горных пород, и их положение в геологическом разрезе, например для магматических с ростом основности возрастает концентрация железистых соединений и плотность.

Магниторазведка

Геомагнетизм исследует магнитное поле Земли (его источники и изменения на протяжении геологической истории Земли), а также магнитные свойства горных пород. Принято считать, что глобальное магнитное поле Земли обусловлено электрическими токами в жидком внешнем ядре, его напряженность изменяется с периодичностью от 100 до 10 000 лет, а полярность подвержена обращениям (инверсиям). С целью поисков месторождений полезных ископаемых магниторазведка применяется в виде наземной, морской или аэромагнитной съёмки.

Электроразведка

Методы электроразведки позволяют изучать параметры геологического разреза, измеряя параметры постоянного электрического или переменного электромагнитного поля. Методы электроразведки разделяются:

1) по характеру источника электромагнитного поля

методы искусственного поля

методы естественного поля

2) по типу источника электромагнитного поля

методы постоянного тока

методы низкочастотного электромагнитного поля

методы высокочастотного электромагнитного поля

 

Пегматитовые месторождения. Геологическое положение, особенности строения и состава. Гипотезы образования. Полезные ископаемые.

 Пегматитами называются своеобразные по минеральному составу, структурам и генезису минеральные образования, которые сложены агрегатами крупных кристаллов, относящихся к алюмосиликатам. Наиболее характерными полезными ископаемыми пегматитов являются Li, Be, Ta, Cs, Nb, Th, Sn, U, слюды керамическое сырье, пьезооптическое сырье, драгоценные камни.

По генезису выделяется две разновидности пегматитов: магматические и метаморфогенные.

Магматические пегматиты пространственно и генетически связаны с материнскими интрузиями и представляют собой позднемагматические тела, формирующиеся на завершающих стадиях глубинных массивов. Они занимают промежуточное положение между интрузивными породами и постмагматическими рудными жилами. Пегматиты располагаются внутри материнских интрузий или в непосредственной близости от них. Они характеризуются тождественностью состава с этими породами, но отличаются от них меньшими размерами, формой (жилы, гнезда), неравномерной крупно- и гигантозернистой структурой, большим количеством минералов, содержащих летучие компоненты, минерализаторы. Пегматиты могут встречаться в магматических породах любого состава. Но подавляющее количество месторождений приурочено к пегматитам в гранитоидных или щелочных магматических комплексах. Такие комплексы формируются в земной коре на глубинах более 3 км в коллизионных обстановках, в зонах тектоно-магматической активизации континентов.

Основными минералами гранитных пегматитов являются: кварц, калиевый полевой шпат, биотит, мусковит; могут присутствовать топаз, касситерит, берилл, флюорит, сподумен, турмалин, апатит, торий, редкие и радиоактивные элементы.

Пегматиты в щелочных формациях состоят из микроклина или ортоклаза, нефелина, эгирина, арфедсонита, эвдиалита, апатита, содержат цирконий, ниобий, тантал, серий, лантан, редкие земли.

Метаморфогенные пегматиты приурочены к метаморфическим комплексам пород и образуются за счет метаморфических преобразований пород. Они локализованы преимущественно в древних (докембрийских) гранитогнейсовых формациях. Их минеральный состав соответствуют определенной метаморфической фации. В обстановке дистен-силлиманитовой фации - мусковитовые пегматиты; андалузит-силлиманитовой – сложные редкометальные пегматиты (например, сподуменовые, т.е. литиевые).

Формы пегматитовых тел, возраст, глубины и термобарические условия формирования. По форме пегматитовые тела представлены жилами, реже линзами, гнездами, трубами. Например, на Мамском месторождении мусковита (в Забайкалье) пегматитовые жилы имеют протяженность до 200 м, мощность до 50 м. Встречаются в природе пегматитовые жилы и больших размеров (например, в Заире - до 5 км длиной и 400 м мощности). Плитообразные жильные тела литиевых (сподуменовых) пегматитов в Афганистане по падению прослежены на 600 м и до конца не вскрыты на глубину.

Геологический возраст пегматитов разнообразен – от архея до мезозоя. Но преобладают все же докембрийские пегматиты. Например, архейский возраст имеют пегматиты Анабарского щита, протерозойский – пегматиты Украинского кристаллического массива, Кольского полуострова. К юным эпохам количество полезных ископаемых в пегматитах уменьшается. Например, месторождения бериллия в докембрийских пегматитах составляют – 75 % от их общего количества, в палеозойских – 23 %, а в мезозойских – 2 %.

Физико-химические условия формирования Глубина формирования пегматитов – от 1,5-2 до 16-20 км. В приповерхностной зоне пегматиты не образуются. Температуры кристаллизации минералов пегматитов от 800-700°С (биотит, ранний кварц) до 50°С (халцедон). Процесс формирования магматогенных пегматитов начинается с отдаления остаточного магматического расплава, обогащенного летучими компонентами (H2O, CO2, F, Cl и др.). Нормальный гранит застывает при температурах ниже 1000°С до 800°С, а в присутствии минерализаторов эти температуры могут снижаться до 730-640°С.

Генетические гипотезы образования пегматитов. Несмотря на высокую промышленную ценность пегматитов, до сих пор остаются нерешенными многие генетические вопросы. Это объясняется множеством их типов, сложностью строения, неоднородности состава разных пегматитов, что свидетельствует о формировании пегматитов в широком диапазоне физико-химических и геологических условий. Геологические гипотезы расходятся по следующим пунктам: роль магматического расплава и метасоматоза, источник преобразующих растворов, степень замкнутости системы и растворимость летучих компонентов (прежде всего H2O) в расплаве. Можно выделить 4 основные гипотезы.

1. Гипотеза А.Е.Ферсмана, развитая затем К.А.Власовым, А.И.Гинзбургом. Пегматиты являются продуктами затвердевания специфического остаточного расплава, обособленного от магматического очага, высокоминерализованного летучими соединениями – H2O, F, Cl, B,CO2 и др. Полная эволюция этого расплава происходит в замкнутой системе. Вначале кристаллизуются типичные магматические минералы, которые затем подвергаются воздействию летучих минерализаторов, создающих пневматолито-гидротермальные растворы. Первичные минералы частично замещаются, возникают новые. А.Е.Фесман выделял 5 этапов образования пегматитов:

· магматический (900-800°С);

· эпимагматический (800-700°С)

· пневматолитовый (700-400°С)

· гидротермальный (400-50°С)

· гипергенный (менее 50°С).

2. Гипотеза А.Н.Заварицкого, В.Д.Никитина и др. отрицает значение остаточного магматического расплава и ведущую роль в становлении пегматитов отдает процессам собирательной перекристаллизации близких к гранитным пегматитам пород (гранитов, аплитов). Перекристаллизация осуществляется под воздействием горячих газово-водных растворов и приводит к формированию крупно- и гигантозернистых минеральных агрегатов. 1 этап – система закрытая. Горячие газово-водные растворы находятся в химическом равновесии с вмещающими гранитными породами, перекристаллизация происходит без изменений состава этих пород. На втором этапе растворы просачиваются через боковые породы, перестают быть химически равновесными, начинаются процессы растворения, замещения, образуются сложные метасоматические пегматиты.

3. Гипотеза Р.Джонса, Е.Камерона, Ф.Хесс и др., имеющая компромиссный характер. Пегматиты образуются комбинированным путем в два этапа. На первом магматическом этапе – закрытая система, из остаточного расплава кристаллизуются простые зональные пегматиты (фракционная кристаллизация). Затем система открытая, под воздействием газово-водных минерализованных глубинных растворов осуществляется метасоматическая переработка ранее отложенных минералов с выносом отдельных компонентов. Так возникают метасоматические части пегматитов, содержащие кварц, альбит, мусковит, минералы редких металлов.

4. Метаморфогенная гипотеза (Г.Рамберг, Ю.М.Соколов) и др.) объясняет условия формирования пегматитов в древних метаморфических комплексах. Пегматиты формируются на разных стадиях метаморфогенного преобразования преимущественно докембрийских пород и по особенностям состава соответствуют фации метаморфизма вмещающих пород. Согласно данной гипотезе пегматиты – продукты регрессивного метаморфизма.

Полезные ископаемые пегматитовых месторождений. Среди пегматитовых месторождений выделяется три генетических класса: простые, перекристаллизованные, метасоматически замещенные.

Простые пегматиты по минеральному и химическому составу соответствую исходным породам. Так, простые гранитные пегматиты содержат кварц, калиевый полевой шпат, кислые плагиоклазы, бесцветную слюду, турмалин, гранат. Они характеризуются письменной (графической) структурой, не обнаруживают признаков перекристаллизации и метасоматоза. К ним приурочены месторождения керамического сырья, используемого в фарфоровой, фаянсовой промышленности – в Карелии (Хетоламбино, Чкаловское), на Кольском полуострове, Украине (Бельчаковское, Глубочанское), в Восточной Сибири (Мамско-Чуйские).

Перекристаллизованные пегматиты – имеют крупнозернистые, гигантозернистые структуры (по А.Н.Заварицкому 1 этап). Раствор находится в равновесии с составом ранних пегматитообразующих соединений. Наиболее ценный минерал этих пегматитов – мусковит. Пример месторождений – Мамский район в Сибири, Карелия, Кольский полуостров. Площадь кристаллов мусковита иногда достигает нескольких квадратных метров.

Метасоматически замещенные – с полной зональностью и наличием крупных (до 200 м3) открытых полостей с друзами ценных минералов. Пегматиты этого типа не только перекристаллизованы, но и метасоматически преобразованы под воздействием горячих газово-водных растворов. Характерны месторождения, имеющие важное промышленное значение: лития, бериллия, цезия, рубидия (их называют редкометальными пегматитами). Кроме того их разрабатывают на руды олова, ниобия и тантала, вольфрама, урана, редких земель. Из нерудных полезных ископаемым к ним приурочены оптическое сырье, драгоценные камни. Пример – месторождение Кайстон (США), на котором встречен сподумен (LiAlSi2O6) длиной 16 м, в диаметре 1 м, массой 90 т. В Южной Африке на пегматитовом месторождении встречались кристаллы берилла (Be3 Al2Si6O18) массой 30 т. Месторождения корунда с его драгоценными разновидностями- сапфиром и рубином – Урал (Карабашское, Борзовское).

 

Билет № 4


Дата добавления: 2018-04-04; просмотров: 507; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!