Понятие о сложном деформированном состоянии

Билет 7.

Перемещение — изменение положения точки тела в пространстве вследствие изменения его формы и размеров под действием нагрузки. Полное перемещение точки в пространстве раскладывается на компоненты u, v и w, параллельные осям x, y и z, соответственно.

Деформация — изменение формы и размеров тела.

Перемещения рассматриваемой точки зависит от деформации всех нагруженных областей тела и включают также в себя перемещения как жесткого целого ненагруженных областей. Поэтому перемещения не могут характеризовать степень деформирования в окрестности рассматриваемой точки. Для этого используют понятие деформации. В отдельных случаях их величины могут совпадать (растяжение стержня), но в общем случае — это разные вещи.

Остановимся еще на одном важном моменте. Очень часто путают два понятия — «деформация» и «перемещение» — хотя ясно, что они не адекватны. Например, представим себе канат, прикрепленный к потолку. По канату на некоторую высоту поднялся человек. Очевидно, что под действием веса человека (пренебрегая весом каната) деформируется (растягивается) только верхняя часть каната, заключенная между потолком и местом, где находится человек. Нижняя часть каната не деформируется, а перемещается как твердое тело. Следовательно, не всегда перемещения сечений какого-то участка стержня непосредственно связаны с его деформацией.

Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. 3-е изд. — М.: Высшая школа, 2003.

Деформации могут быть угловые и линейные.

Линейная деформация характеризует изменение размеров тела. Различают абсолютную деформацию ΔL и относительную деформацию ε = ΔL/L.

Угловая деформация характеризует изменение формы тела и чаще всего называется углом сдвига.

Угол сдвига — это изменение первоначально прямого угла. γ = α + β .

Полная деформация — это сумма линейной и угловой деформации.

Если взять малый элемент тела параллелепипед, ориентированный по осям x, y, z, то соответственно возникает три линейных деформации (вдоль осей x, y, z )εxy, εz

x=dxΔdx y=dyΔdy z=dzΔdz


и три угловые деформации xy yz zx в трех взаимно-перпендикулярных плоскостях.

Относительные линейные и угловые деформации – величины безразмерные.

Деформации упругие и пластические

Деформации делятся на упругие и пластические (остаточные).

  • Упругими деформациями называются деформации, исчезающие после снятия вызвавших их сил.
  • Пластичными деформациями называются деформации, не исчезающие после снятия вызвавших их сил.

Типы деформаций

В зависимости от приложенных к телу нагрузок различают несколько видов деформации, отличающиеся законом распределения напряжений по сечению тела.

Растяжение-сжатие

в поперечном сечении действует только одно внутреннее усилие, не равное нулю — продольное усилие. Конструкция В этом случае говорят о линейной деформации конструкции (характеризуется абсолютным и относительным удлинением, остальными деформациями пренебрегают).

Чистый сдвиг

в поперечном сечении действует только поперечная сила. В этом случае линейные относительные деформации равны нулю, углы сдвига не равны нулю (характеризуется изменением формы)

Кручение

в поперечном сечении действует только крутящий момент. Линейные относительные деформации равны нулю, углы сдвига не равны нулю.

Изгиб

в поперечном сечении действуют изгибающий момент и поперечная сила.

Сложное сопротивление

одновременное действие нескольких типов простых деформаций — растяжения-сжатия, кручения, изгиба.

 

Понятие о сложном деформированном состоянии

Совокупность деформаций, возникающих по различным направлениям и в различных плоскостях, проходя через точку, определяют деформированное состояние в этой точке. Сложное деформированное состояние возникает, если деталь одновременно подвергается нескольким простейшим нагружениям.
В ряде случаев нормальные и касательные напряжения, возникающие в детали, имеют одинаковый порядок и ими нельзя пренебрегать. Тогда расчет универсального критерия, позволяющего рассчитать предельное состояние для любого материала, нет. Разработано несколько различных гипотез предельных состояний, при расчетах используют наиболее подходящую гипотезу. Расчёты по гипотезам прочности позволяют избегать дорогостоящих испытаний конструкции.
В настоящее время для расчета валов при совместном действии изгиба и кручения используют только третью и пятую теории прочности.
Сравнение разнотипных состояний производится с помощью эквивалентного (простого) напряженного состояния. Обычно сложное напряженное состояние заменяют простым растяжением (рис. 54). проводят при сложном деформирован В ряде случаев нормальные и касательные напряжения, возникающие в детали, имеют одинаковый порядок и ими нельзя пренебрегать. Тогда расчет проводят при сложном деформированном состоянии
Расчетное напряжение, соответствующее выбранному одноосному растяжению, называют эквивалентным напряжением (рис. 54).

 

Расчет эквивалентного напряжения для точности по теории максимальных касательных напряжений выполняется по формуле

а по теории энергии формоизменения по формуле
где о — действующее в точке нормального напряжения; т — действующее в точке касательное напряжение.
Условие прочности получим, сопоставив эквивалентное напряжение с предельным, полученным экспериментально для выбранного материала:

 

допускаемый коэффициент запаса прочности.

 

Если необходимо добиться наименьших изменений формы конструкции, то
производится расчет по допускаемым перемещениям, используя условие жесткости.

Условие жесткости: umax ≤ [u],
где
umax — максимальное реальное перемещение выбранной точки конструкции,
[u] — допускаемое перемещение, заданное из условий эксплуатации конструкции.

 


Дата добавления: 2018-04-04; просмотров: 859; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!