Основные характеристики фотоэлемента



ВАХ.

Основной характеристикой фотоэлемента является его вольт-амперная характеристика (ВАХ), при различных освещенностях или световых потоках (рис.3а). При отсутствии освещения (J=0) ВАХ имеет вид характерный для обычного р-n перехода. При увеличении освещенности (J1 и J2) появляется обратный ток неосновных носителей и вся кривая смещается вниз.

 

 


Рис.3. Общий вид (а) и рабочая область (б) вольт-амперной характеристики фотоэлемента.

 

Точки пересечения ВАХ с осью напряжений соответствуют значениям фото-ЭДС (или напряжению холостого хода Uхх) при разных освещенностях (для кремниевого фотоэлемента фото-ЭДС имеет порядок ~0,5–0,55 В). Точки пересечения ВАХ с осью токов соответствуют значениям токов короткого замыкания Iкз. У кремниевых фотоэлементов плотность тока короткого замыкания при средней освещенности солнечным светом имеет порядок ~20-25 мА/см2.

По ВАХ при различных освещенностях фотоэлемента можно выбрать оптимальный режим работы фотоэлемента, т.е. оптимальное сопротивление нагрузки, при котором в нагрузке будет выделяться наибольшая мощность. Оптимальному режиму работы фотоэлементов соответствует наибольшая площадь вписанного прямоугольника с вершиной на ВАХ при заданной освещенности (рис.3б). Для кремниевых фотоэлементов при оптимальной нагрузке напряжение нагрузки составляет ~0,35-0,4 В, плотность тока 15-20 мА/см2.

Так как рабочей областью является область прямого смещения р-n перехода и обратного тока, то обычно ВАХ фотоэлемента переворачивают и она имеет вид, приведенный на рис.4.

Рис. 4. Вольт-амперная характеристика ФЭ при разных интенсивностях света J и линия оптимальной нагрузки.

Световые характеристики фотоэлемента.

 

Световые характеристики фотоэлемента -это зависимости фото-ЭДС и тока короткого замыкания фотоэлемента от освещенности фотоэлемента.

а) При малой освещенности зависимость Iкз ~J линейна, т.к. ток прямо пропорционален количеству родившихся электронно-дырочных пар:

,

а количество появившихся электронно-дырочных пар, в свою очередь, прямо пропорционально количеству поглощенных квантов света:

,

где α – показатель поглощения, J – интенсивность света, η – внутренний квантовый выход. Для кремниевых фотодиодов η ~ 100%. Квантовый выход можно определить по экспериментальной зависимости Iкз(J).

Пропорциональность Iкз~g обусловлена тем, что р-область конструктивно изготовлена так, чтобы ее толщина была значительно меньше диффузионной длины неосновных носителей заряда. Поэтому практически все неосновные носители, возникшие в р-области в результате световой генерации, доходят до р-n перехода  и принимают участие в образовании фототока. Во всяком случае потери неосновных носителей на рекомбинацию в р-области и на поверхности практически не зависят от освещенности, т.к. исходный полупроводник содержит малое количество неконтролируемых примесей, которые могли бы выполнять роль рекомбинационных ловушек и ловушек захвата. Отклонение световых характеристик от линейной зависимости связано с уменьшением высоты потенциального барьера при накоплении избыточного заряда электронов в n-области и дырок в р-области.

б) По мере увеличения освещенности возрастает накопление зарядов, и дополнительная разность потенциалов все сильнее понижает потенциальный барьер. За счет этого увеличивается вклад прямого тока, и зависимость становится сублинейной.

 

Рис. 5. Ток короткого замыкания Is и напряжение холостого хода Uо как функция интенсивности света J.

 

В данной работе солнечная батарея состоит из четырех ячеек, соединенных последовательно, и имеет максимальное напряжение холостого хода не более 2 В. При слабых освещенностях зависимость напряжения холостого хода (Uхх) от освещенности J такая же, как у тока короткого замыкания. При возрастании освещенности потенциальный барьер понижается так сильно, что прямая составляющая тока уравновешивает обратный фототок вне зависимости от степени освещенности.

Эффективность преобразования

 

Коэффициент полезного действия (КПД) представляет собой отношение максимальной мощности, которую можно получить от фотоэлемента, к полной мощности светового потока, падающего на рабочую поверхность фотоэлемента:

К основным процессам, приводящим к уменьшению КПД фотоэлемента, относят: отражение от поверхности полупроводника, фотоэлектрически неактивное поглощение квантов света (поглощение без образования пар носителей электрон-дырка), рекомбинацию неравновесных носителей ещё до их разделения электрическим полем p-n перехода, а также потери мощности при прохождении тока через объемное сопротивление базы фотоэлемента. В результате этих процессов КПД кремниевых фотоэлементов при преобразовании солнечного света в электрическую энергию не превышает 12%.


Дата добавления: 2018-04-04; просмотров: 2079; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!