Понятие об импульсных схемах (триггер, мультивибратор)
Переход на импульсные схемы и импульсные источники питания обусловлен следующими факторами:
-Импульсные схемы имеют намного меньшие массы и габариты, по сравнению с трансформаторными схемами питания
-Обмотки трансформаторов высокой частоты имеют намного большую плотност тока нежели обмотки низкой частоты, следовательно импульсные схемы значительно экономят цветные металы на их изготовление
-Малые удельные сопротивления сердечников трансформаторов высокой частоты позволяют добится минимальных потерь и высокого КПД, может превышать 80%, что недостижимо в обычных источниках питания
-Импульсные схемы легко могут стабилизировать выходное напряжение путем воздействия на первичные цепи.
На рисунке ниже приведена структурная схема импульсного блока питания:
Сетевое напряжение поступает на сетевой фильтр. Этот элемент отсекает помехи, которые возникают от соседних импульсных схем и резкие скачки напряжений. Все импульсные схемы это в некотором роде преобразователи, причем понижающие. Очень многие устройства, подключаемые к импульсным схемам, создают помехи. Если это электронно вычислительная техника, эти помехи будут в виде кода, вырабатываемого данным устройством. Если будет отсутствовать сетевой фильтр эти помехи будут засорять сеть, при движении помех в сторону сети источник питания, по принципу повышающего трансформатора, их усилит. Поскольку помехи в виде кода, то вся информация будет утекать в сеть. Для улучшения отсечки помех устанавливается дополнительный фильтр на выходе импульсного блока питания.
|
|
После сетевого фильтра напряжение выпрямляется и сглаживается сетевым выпрямителем и конденсаторами. Следующим блоком по схеме идет преобразователь. Он преобразует постоянное напряжение в двухполярные импульсы высокой частоты. В преобразователе формируются двухполярные импульсы для того, что бы исключить намагничивание сердечника постоянным током.
Импульсы высокой частоты подаются на первичную обмотку трансформатора. Там по законам трансформации напряжение преобразуется в меньшее. Далее напряжение подается на выпрямитель и фильтр подавления высоких частот. Для получения стабилизированного напряжения устанавливается стабилизатор напряжения.
Импульсные схемы данного типа имеют небольшой недостаток, они как и все источники питания имеют напряжение падения. При падении напряжения ниже напряжения стабилизации оно перестает быть стабилизированным. Данный недостаток не имеет никакого значения при стабильной нагрузке.
Для поддержания постоянного напряжения на выходе импульсного источника его доработали и вставили обратную связь. Смысл обратной связи передать параметры измеренные на выходе преобразователя схеме управления преобразователем. Современные импульсные схемы содержат микросхемы которые соединяют блок схемы утравления и задающий генератор. Таким образом генератор будет работать пока на него не подастся определенное напряжение заданное через делитель на выходе
|
|
Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.
Отличительной особенностью триггера как функционального устройства является свойство запоминания двоичной информации. Под памятью триггера подразумевают способность оставаться в одном из двух состояний и после прекращения действия переключающего сигнала. Приняв одно из состояний за «1», а другое за «0», можно считать, что триггер хранит (помнит) один разряд числа, записанного в двоичном коде.
|
|
При изготовлении триггеров применяются преимущественно полупроводниковые приборы (обычно биполярные и полевые транзисторы), в прошлом — электромагнитные реле, электронные лампы. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различные программируемые логические интегральные схемы (ПЛИС). Используются, в основном, в вычислительной технике для организации компонентов вычислительных систем: регистров, счётчиков, процессоров, ОЗУ.
Триггеры подразделяются на две большие группы — динамические и статические. Названы они так по способу представления выходной информации.
Динамический триггер представляет собой управляемый генератор, одно из состояний которого (единичное) характеризуется наличием на выходе непрерывной последовательности импульсов определённой частоты, а другое (нулевое) — отсутствием выходных импульсов. Смена состояний производится внешними импульсами (рис. 3).
Рис. 3. Временная диаграмма работы динамического триггера
К статическим триггерам относят устройства, каждое состояние которых характеризуется неизменными уровнями выходного напряжения (выходными потенциалами): высоким — близким к напряжению питания и низким — около нуля. Статические триггеры по способу представления выходной информации часто называют потенциальными.
|
|
Статические (потенциальные) триггеры, в свою очередь, подразделяются на две неравные по практическому значению группы — симметричные и несимметричные триггеры. Оба класса реализуются на двухкаскадном двухинверторном усилителе с положительной обратной связью, а названием своим они обязаны способам организации внутренних электрических связей между элементами схемы.
Симметричные триггеры отличает симметрия схемы и по структуре, и по параметрам элементов обоих плеч. Для несимметричных триггеров характерна неидентичность параметров элементов отдельных каскадов, а также и связей между ними.
Симметричные статические триггеры составляют основную массу триггеров, используемых в современной радиоэлектронной аппаратуре. Схемы симметричных триггеров в простейшей реализации (2х2ИЛИНЕ) показаны на рис. 4.
Рис. 4. Симметричные триггеры: а — с непосредственной связью между каскадами; б — с резистивной связью
Основной и наиболее общий классификационный признак — функциональный — позволяет систематизировать статические симметричные триггеры по способу организации логических связей между входами и выходами триггера в определённые дискретные моменты времени до и после появления входных сигналов. По этой классификации триггеры характеризуются числом логических входов и их функциональным назначением (рис. 5).
Рис. 5. Функциональная классификация триггеров
Вторая классификационная схема, независимая от функциональной, характеризует триггеры по способу ввода информации и оценивает их по времени обновления выходной информации относительно момента смены информации на входах (рис. 6).
Рис. 6. Классификация триггеров по способу ввода информации
Каждая из систем классификации характеризует триггеры по разным показателям и поэтому дополняет одна другую. К примеру, триггеры RS-типа могут быть в синхронном и асинхронном исполнении.
Асинхронный триггер изменяет своё состояние непосредственно в момент появления соответствующего информационного сигнала(ов), с некоторой задержкой равной сумме задержек на элементах, составляющих данный триггер.
Синхронные триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации С (от англ. clock). Этот вход также обозначают термином «такт». Такие информационные сигналы называют синхронными. Синхронные триггеры в свою очередь подразделяют на триггеры со статическим и с динамическим управлением по входу синхронизации С.
Триггеры со статическим управлением воспринимают информационные сигналы при подаче на вход С логической единицы (прямой вход) или логического нуля (инверсный вход).
Триггеры с динамическим управлением воспринимают информационные сигналы при изменении (перепаде) сигнала на входе С от 0 к 1 (прямой динамический С-вход) или от 1 к 0 (инверсный динамический С-вход). Также встречается название «триггер управляемый фронтом».
Одноступенчатые триггеры (latch, защёлки) состоят из одной ступени представляющей собой элемент памяти и схему управления, бывают, как правило, со статическим управлением. Одноступенчатые триггеры с динамическим управлением применяются в первой ступени двухступенчатых триггеров с динамическим управлением. Одноступенчатый триггер на УГО обозначают одной буквой - Т.
Двухступенчатые триггеры (flip-flop, шлёпающие) делятся на триггеры со статическим управлением и триггеры с динамическим управлением. При одном уровне сигнала на входе С информация, в соответствии с логикой работы триггера, записывается в первую ступень (вторая ступень заблокирована для записи). При другом уровне этого сигнала происходит копирование состояния первой ступени во вторую (первая ступень заблокирована для записи), выходной сигнал появляется в этот момент времени с задержкой равной задержке срабатывания ступени. Обычно двухступенчатые триггеры применяются в схемах, где логические функции входов триггера зависят от его выходов, во избежание временны́х гонок. Двухступенчатый триггер на УГО обозначают двумя буквами - ТТ.
Триггеры со сложной логикой бывают также одно- и двухступенчатые. В этих триггерах наряду с синхронными сигналами присутствуют и асинхронные.
Триггерные схемы классифицируют также по следующим признакам:числу целочисленных устойчивых состояний (основанию системы счисления) (обычно устойчивых состояний два, реже — больше, см. двоичный триггер, троичный триггер, четверичный триггер[8], …, десятичный триггер, …, n-ичный триггер, …);числу уровней — два уровня (высокий, низкий) в двухуровневых элементах, три уровня (положительный, ноль, отрицательный) в трёхуровневых элементах, …, N-уровней в N-уровневых элементах, … ;по способу реакции на помехи — прозрачные и непрозрачные. Непрозрачные, в свою очередь, делятся на проницаемые и непроницаемые. по составу логических элементов (триггеры на элементах И-НЕ, ИЛИ-НЕ и др.).
Мультивибратор — релаксационный генератор сигналов электрических прямоугольных колебаний с короткими фронтами. Термин предложен голландским физиком ван дер Полем, так как в спектре колебаний мультивибратора присутствует множество гармоник — в отличие от генератора синусоидальных колебаний («моновибратора»). Впервые мультивибратор был описан Икклзом и Джорданом в 1918 году.
Мультивибратор является одним из самых распространённых генераторов импульсов прямоугольной формы, представляющий собой двухкаскадный резистивный усилитель с глубокой положительной обратной связью. В электронной технике используются самые различные варианты схем мультивибраторов, которые различаются между собой по типу используемых элементов (ламповые, транзисторные, тиристорные, микроэлектронные и так далее), режиму работы (автоколебательный, ждущие синхронизации), видам связи между усилительными элементами, способам регулировки длительности и частоты генерируемых импульсов и так далее.
Приведенная схема мультивибратора на двух транзисторах сейчас почти не применяется, так как имеет плохие частотные свойства и не очень крутые фронты, что ограничивает частоту его генерации до единиц МГц. На более высоких частотах оба транзистора запираются и для восстановления работы устройство надо перезапускать, что во многих случаях неприемлемо.
Принципиальная схема «классического» простейшего транзисторного мультивибратора
Существуют три типа схем мультивибратора в зависимости от режима работы:
нестабильный, или автоколебательный: схема самопроизвольно переходит из одного состояния в другое. При этом не обязателен сигнал синхронизации, если не требуется захват частоты;
моностабильный: одно из состояний является стабильным, но другое состояния неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивибраторов иногда, в литературе, называют одновибраторы или ждущие мультивибраторы.
бистабильный: схема устойчива в любом состоянии. Схема может быть переключена из одного состояния в другое с помощью внешних импульсов. Такие устройства называют триггерами, название «мультивибратор» не совсем корректно, так как двусмысленно.
Отнесение мультивибратора к классу автогенераторов оправдано лишь при автоколебательном режиме его работы. В ждущем режиме мультивибратор вырабатывает импульсы только тогда, когда на его вход поступают синхронизирующие сигналы. Режим синхронизации отличается от автоколебательного тем, что в этом режиме с помощью внешнего управляющего (синхронизирующего) колебания удаётся подстроить частоту колебаний мультивибратора под частоту синхронизирующего напряжения или сделать кратной ей (захват частоты) для автоколебательных мультивибраторов.
Схема может находиться в одном из двух нестабильных состояний и периодически переходит из одного в другое и обратно. Фаза перехода очень короткая благодаря положительной обратной связи между каскадами усиления.
Состояние 1: Q1 закрыт, Q2 открыт и насыщен, C1 быстро заряжается базовым током Q2 через R1 и Q2, после чего при полностью заряженном C1 (полярность заряда указана на схеме) через R1 не течет ток, напряжение на C1 равно (ток базы Q2)* R2, а на коллекторе Q1 — питанию.
Напряжение на коллекторе Q2 невелико (падение на насыщенном транзисторе).
C2, заряженный ранее в предыдущем состоянии 2 (полярность по схеме), начинает медленно разряжаться через открытый Q2 и R3. Пока он не разрядился, напряжение на базе Q1 = (небольшое напряжение на коллекторе Q2) — (большое напряжение на C2) — то есть отрицательное напряжение, наглухо запирающее транзистор.
Состояние 2: то же в зеркальном отражении (Q1 открыт и насыщен, Q2 закрыт).
Переход из состояния в состояние: в состоянии 1 C2 разряжается, отрицательное напряжение на нём уменьшается, а напряжение на базе Q1 — растет. Через довольно длительное время оно достигнет нуля. Разрядившись полностью, С2 начинает заряжаться в обратную сторону, пока напряжение на базе Q1 не достигнет примерно 0,6 В.
Это приведет к началу открытия Q1, появлению коллекторного тока через R1 и Q1 и падению напряжения на коллекторе Q1 (падение на R1). Так как C1 заряжен и быстро разрядиться не может, это приводит к падению напряжения на базе Q2 и началу закрытия Q2.
Закрытие Q2 приводит к снижению коллекторного тока и росту напряжения на коллекторе (уменьшение падения на R4). В сочетании с перезаряженным C2 это ещё более повышает напряжение на базе Q1. Эта положительная обратная связь приводит к насыщению Q1 и полному закрытию Q2.
Такое состояние (состояние 2) поддерживается в течение времени разряда C1 через открытый Q1 и R2.
Таким образом, постоянная времени одного плеча есть С1 * R2, второго — C2 * R3. Это дает длительность импульсов и пауз.
Также эти пары подбираются так, чтобы падение напряжения на резисторе в условиях протекания через него тока базы было бы большим, сравнимым с питанием.
R1 и R4 подбираются намного меньшие, чем R3 и R2, чтобы зарядка конденсаторов через R1 и R4 была быстрее, чем разрядка через R3 и R2. Чем больше будет время зарядки конденсаторов, тем положе окажутся фронты импульсов. Но отношения R3/R1 и R2/R4 не должны быть больше, чем коэффициенты усиления соответствующих транзисторов, иначе транзисторы не будут открываться полностью.
Двухкаскадный усилитель охваченный, положительной обратной связью, становится мультивибратором
Дата добавления: 2018-04-04; просмотров: 1924; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!