Статические компенсаторы реактивной мощности



 

Статические компенсаторы реактивной мощности (СКРМ) основаны на использовании управляемых реакторов и конденсаторных батарей. При параллельном их включении мощность всего устройства равна алгебраической сумме мощностей реактора и конденсаторной батареи (рис. 2). Весьма полезным свойством компенсаторов реактивной мощности на базе УШР является возможность подключения в точку необходимой компенсации реактивной мощности без использования промежуточных устройств. Это особенно важно для создания гибких линий электропередач с применением плавно-регулируемых устройств компенсации реактивной мощности по концам линии. Перспективно использование СКРМ в сетях с реверсивными перетоками активной мощности, в системах со слабыми межсистемными связями и в протяженных распределительных сетях.

 

Рис. 2 Принципиальная схема СКРМ на базе УШР

 

 

Статические тиристорные компенсаторы

 

Статические компенсаторы, где реактор регулируется с помощью тиристорного ключа, получили название статических тиристорных компенсаторов (СТК). Эти устройства могут работать как на выдачу, так и на потребление реактивной мощности. Регулирование реактивной мощности происходит плавно и в широких пределах. С другой стороны, при работе тиристорных ключей возникают высшие гармоники, что требует введения в схему фильтров. Кроме того, СТК неэффективны в слабых сетях.

Применение СТК в энергосистеме позволяет решить проблему изменения реактивного тока и сгладить колебания напряжения в узлах нагрузки и непосредственно у потребителя. Срок окупаемости затрат на СТК составляет в среднем от 0,5 до 1 года. Например, применение СТК на одном из российских металлургических предприятий увеличило коэффициент мощности нагрузки с 0,7 до 0,97, снизило колебания напряжения питающей сети в 3 раза, снизило время одной плавки металла со 150 мин. до 130 мин. и удельный расход электроэнергии на тонну выплавленной стали на 4%.

 

Рис. 3 СТК российского производства в Анголе

 

 

СТАТКОМ

СТАТКОМ – статический компенсатор реактивной мощности. Он предназначен для регулирования реактивной мощности в широких пределах (плюс-минус 100%). СТАТКОМ отличается от описанного выше СКРМ иным устройством, увеличенным набором функций и улучшенными характеристиками. Упрощенно, СТАТКОМ, это преобразователь напряжения на управляемых силовых тиристорах (или транзисторах), включенный через трансформатор параллельно линии в узле сети, к которому подключена линия (рис. 4). Принцип работы СТАТКОМ идентичен принципу работы агрегатов бесперебойного питания: из напряжения источника постоянного тока за счет широтно-импульсной модуляции и использования фильтра гармоник формируется синусоидальное напряжение частотой 50 Гц±3 Гц. Главное свойство СТАТКОМ – способность генерировать ток любой фазы относительно напряжения сети. То есть СТАТКОМ обеспечивает регулирование значения выходного напряжения и его фазы. Регулирование происходит за счет изменения реактивной мощности, потребленной или выданной в сеть.

 

Рис. 4 Схема СТАТКОМ

 

 

Специалисты считают, что сегодня СТАТКОМ – наиболее совершенное статическое устройство FACTS. Он обладает высоким быстродействием, малым содержанием высших гармоник, малыми габаритами, может использоваться в любых электрических сетях. Использование СТАТКОМ позволяет не только регулировать напряжение, но и увеличивать пропускную способность сети, оптимизировать потоки мощности, улучшать форму кривой напряжения и т.д. Модификация СТАТКОМа – активный фильтр – позволяет компенсировать все высшие гармоники в сетях.

 

Рис. 5 Внешний вид СТАТКОМ

 

 

Фазоповоротные устройства

Фазоповоротное устройство (ФПУ) воздействует на угол передачи и соответственно на изменение передаваемой по линии мощности. Простейшая схема ФПУ (рис. 6) состоит из двух трансформаторов: параллельного Т1 и последовательного Т2, создающего вектор дополнительного напряжения в линии, перпендикулярно направленного к вектору U1, что формирует фазовый сдвиг по отношению к основному напряжению на некоторый регулируемый угол. Вариант ФПУ с тиристорным управлением обладает быстродействием, способен влиять не только на распределение потоков активной мощности, но и на пределы динамической устойчивости.

 

Рис. 6 Схема фазоповоротного устройства

 

При включении в сеть ФПУ, электроэнергия распределяется по линиям электропередач пропорционально косинусу разности фазовых углов напряжения на входе и выходе линии. Там, где между двумя точками существуют параллельные цепи с разной емкостью, прямое управление величиной фазового угла позволяет контролировать распределение потока электроэнергии между ними, предотвращая перегрузки.

Следует заметить, что ФПУ принципиально отличается от описанных выше статических тиристорных компенсаторов (СКРМ, СТК, СТАТКОМ). Хотя все эти устройства изменяют передаваемую по линии мощность, но они воздействуют на разные параметры. Статические компенсаторы воздействуют на напряжение, а ФПУ – на угол передачи.

 

Вставки постоянного тока

 

Вставка постоянного тока (ВПТ) – это преобразовательная подстанция, в которой инверторы (устройства для преобразования постоянного тока в переменный) и выпрямители находятся в одном месте. ВПТ предназначена для преобразования переменного тока в постоянный и последующего преобразования постоянного тока в переменный исходной или иной частоты. Вставки постоянного тока используются для: соединения магистральных линий различной частоты или двух электрических сетей той же самой номинальной частоты, но разных нефиксированных фазовых сдвигов.

Самая известная в России и самая крупная в мире (передаваемая мощность – 1400 МВт) вставка постоянного тока установлена на подстанции Выборгская (Ленинградская область), построенной специально для передачи электроэнергии в Финляндию. На энергообъекте установлены четыре блока комплектных выпрямительно-преобразовательных устройств (КВПУ) по 350 МВт. В отличие от большинства других ВПТ, устройство в Выборге может передавать электроэнергию только в одну сторону – от энергосистемы России в энергосистему Финляндии.

 

Заключение.

Актуальность использования

Устройства FACTS служат для комплексного решения следующих актуальных проблем транспорта электроэнергии в ЕЭС России:

· недостаточная пропускная способность межсистемных и системообразующих линий электропередачи, ограничиваются возможности удовлетворения требований рынка;

· ограничения по выдаче мощности электростанций;

· слабая управляемость сети, недостаточный объем устройств регулирования напряжения, как следствие повышенные до опасных значений напряжения в периоды суточного и сезонного снижения нагрузки;

· недостаточная степень устойчивости ОЭС;

· неоптимальное распределение потоков мощности по параллельным линиям различного класса напряжений, как следствие недоиспользование сетей, рост потерь в сетях.

· Эффекты от внедрения (использования)

FACTS - это устройства, служащие для:

· повышения пропускной способности линий электропередачи;

· обеспечения устойчивой работы энергосистемы при различных возмущениях;

· обеспечения заданного (принудительного) распределения мощности в электрических сетях в соответствии с требованиями диспетчера;

· повышения надежности энергосбережения потребителей;

· снижения потерь в электрических сетях, решения задачи по превращению электрической сети из пассивного устройства транспорта электроэнергии в активный элемент управления режимами работы.

 

 

Список литературы.

 

1. http://www.ntc-power.ru/innovative_projects/devices_and_technology_management_lines_of_alternating_current_facts/

2. http://m.energyland.info/index.php?action=analiticview&id=64640&offset=1820&limit=10

3. https://www.energy.siemens.com/ru/ru/power-transmission/facts/


Дата добавления: 2018-02-28; просмотров: 2236; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!