Методы автоматической идентификации
В системах автоматического (автоматизированного) определения местоположения транспортного средства — AVL (AutomaticVehicleLocationsystem) местоположение ТС определяется автоматически по мере перемещения его в пределах данной географической зоны. Система AVL обычно состоит из подсистемы ОМП, подсистемы передачи данных и подсистемы управления и обработки данных.
Методы ОМП, используемые в AVL-системах, можно разбить на три основных категории: зональные методы, методы навигационного счисления и методы ОМП по радиочастоте.
1. Методы приближения. С помощью достаточно большого количества контрольных пунктов (КП), точное местоположение которых известно в системе, на территории города создается сеть контрольных зон. Местоположение ТС определяется по мере прохождения им КП. Распознанный индивидуальный код КП передается в бортовую аппаратуру, которая через подсистему передачи данных передает эту информацию, а также свой идентификационный код в подсистему управления и обработки данных. Так реализуется метод прямого приближения.
На практике чаще используется инверсный метод приближения — обнаружение и идентификация ТС осуществляется с помощью установленных на них активных, пассивных или полуактивных маломощных радиомаяков, передающих на приемник КП свой индивидуальный код, или же с помощью оптической аппаратуры считывания и распознавания характерных признаков объекта, например, автомобильных номеров. Информация от КП далее передается в подсистему управления и обработки данных. Основное применение зональных систем — комплексное обеспечение охраны автомашин, обеспечение поиска автомашин при угоне.
|
|
2. Методы ОМП по радиочастоте. Местоположение ТС определяется путем измерения разности расстояний от ТС до трех или более радиомаяков. Данную группу методов можно условно разбить на две подгруппы: радиопеленгация, при которой абсолютное или относительное местоположение ТС определяется при приеме излучаемого им радиосигнала сетью стационарных или мобильных приемных пунктов, и вычисление координат по результатам приема специальных радиосигналов на борту подвижного объекта (методы прямой или инверсной радионавигации).
Методы радиопеленгации. С помощью распределенной по территории города сети пеленгаторов или с помощью мобильных средств пеленгации возможно отслеживание местоположения ТС, оборудованных радиопередатчиками-маяками. Пример: российская систему СКИФ; система на базе мобильных пеленгаторов – система ЛОДЖЕК.
Методы радионавигации. Наилучшие точностные и эксплуатационные характеристики в настоящее время имеют спутниковые навигационные системы (СНС), в которых достигается точность местоопределения в стандартном режиме не менее 50 —100 м, а с применением специальных методов обработки информационных сигналов в режиме фазовых определений или дифференциальной навигации — несколько метров.
|
|
3. Методы навигационного счисления. Данные методы основаны на измерении параметров движения ТС с помощью датчиков ускорений, угловых скоростей, пройденного пути и направления. На основе полученных данных вычисляется текущее местоположение ТС относительно известной начальной точки. В целом данные методы могут использоваться в системах, применяющих методы радионавигации. Основное преимущество методов навигационного счисления — независимость от условий приема навигационных сигналов бортовой аппаратурой. Недостатками методов навигационного счисления можно считать необходимость коррекции накапливаемых ошибок измерения параметров движения, достаточно большие габариты бортовой аппаратуры, отсутствие доступной малогабаритной элементной базы для создания бортовой аппаратуры (акселерометров, автономных счислителей пройденного пути, датчиков направления), сложность обработки параметров движения с целью вычисления координат в бортовом вычислителе. Наиболее перспективным направлением применения подобных методов можно считать их совместное использование с радионавигацией, что позволит скомпенсировать недостатки, присущие обоим методам.
|
|
Виды штрихового кодирования
Штриховой код представляет собой чередование темных и светлых полос разной ширины, что соответствует определенным символам кода. Это позволяет считывать данные даже с помощью самых простых сканеров. Для возможности визуальной проверки под штриховым кодом непосредственно печатается его числовой эквивалент.
Для унификации и стандартизации записи информации о грузе используются штриховые коды различных видов.
Линейные символики позволяют кодировать небольшой объем информации (до 30 символов – обычно это цифры) и их можно считывать недорогими сканерами. Для учета различных требований при обработке грузов на производственных складах, предприятиях розничной торговли и на транспорте используется достаточно большое количество различных видов линейных штрих-кодов.
Штрих-код Code 39является наиболее часто используемым стандартом в промышленной системе штрихкодов. Основная черта этого вида штрих-кода – возможность кодировать сообщения, используя полный набор буквенно-цифровых символов. Full ASCII Code 39 может быть увеличен до 128 символов путем совмещения специальных знаков ($, /, %, +) с буквами A–Z для формированиясимволов, не представленных в стандартной системе символов Code 39.
|
|
Вид штрих-кода Code 128имеет возможность изменения длины и включает полную систему кодов ASCII 128. Каждый знак состоит из 11 модулей, которые могут представлять одну из четырех плотностей штрих-кода. Он поддерживает как буквенные, так и цифровые символы, наибольшее количество знаков на дюйм и имеет варьируемую длину.
В 1973 г. в США была создана организация «Универсальный товарный код» (UPC – UniversalProductCode). UPC стал наиболее распространенным штрих-кодом с фиксированной длиной для маркировки розничного товара в США.
С 1977 г. в Западной Европе для идентификации потребительских товаров стала применяться аналогичная система под названием «Европейский артикул» (EAN-13 – EuropeanArticleNumbering). EAN является разновидностью UPC, единственная их разница – длина (UPC – 12, а EAN – 13 знаков). Таким образом, коды, нанесенные на упаковку товара в одной стране, могут быть расшифрованы в другой.
Interleaved 2 of 5 (ITF) – это высокоплотный, с изменяемой длиной, только цифровой штрих-код (рис. 2.5). Его обычно применяют в транспортировке и дистрибьюции товаров, где требуются очень большие номера и уникально обозначенные упаковки. Этот вид штрих-кода уверенно считывается даже с гофрированных поверхностей картонных упаковок. Код начинается и заканчивается специальными «стартовым» и «стоповым» символами.
Двумерные символики (2D-коды) разработаны для кодирования большого объема информации (до 7 тысяч знаков). Двумерные кодировки считываются при помощи специального сканера двумерных кодов и позволяют быстро и безошибочно вводить большой объем информации. Расшифровка такого кода проводится в двух измерениях (по горизонтали и по вертикали).
Многорядные символы напоминают несколько составленных линейных кодов.
DF417 – лучший пример составного штрих-кода, наиболее распространенного среди всех 2D-символов.PDF417 – это код с изменяющейся величиной, способный закодировать любое письмо, номер или знак. Каждый знак состоит из 4 штрихов и 4 пробелов в 17-модульной структуре. АббревиатураPDF означает «переносной файл данных», а 417 – структура модуля. Каждый код PDF417 включает от 3 до 90 рядов, окруженных изолированной зоной со всех 4 сторон. PDF417 поддерживает функцию сжатия текста, чисел или байтов. PDF417 может содержать до 340 знаков на квадратный дюйм с максимальной емкостью до 1850 текстовых знаков.
Матричные коды составлены из системы ячеек и могут быть квадратными, шестиугольными или круглыми по форме и внешне напоминают шахматную доску.
DataMatrixCode – это двухмерный код с изменяющейся длиной, с возможностью кодирования всех 128 ASCII знаков. Каждый символ матричного кода состоит из изолированной зоны по периметру, границы с двумя выделенными жирным шрифтом углами и двумя невыделенными.
MaxiCode в основном используется одним из крупнейших в мире операторов экспресс-доставки UnitedParcelService (UPS) для быстрой сортировки почты. Он относится к двухмерному матричному коду с постоянной величиной, включает 866 элементов, организованных в 33 ряда вокруг символа в центре. Один символ данного кода способен кодировать до 93 знаков данных и использует 5 различных кодовых наборов для кодирования 256 ASCII знаков. Код учитывает 3 класса данных: вид услуги, код страны и сведения о грузе. ГОСТ Р 51294.10–2002 рекомендует использовать этот код для сортировки грузов перевозчиком (если маршрут следования груза предусматривает два или более пункта) и отслеживания местонахождения грузовых единиц.
Дата добавления: 2018-02-28; просмотров: 674; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!