Приведите пример методов и моделей представления знаний в экспертных системах



Логические модели представления знаний реализуются средствами логики пре­дикатов. Предикатом называется функция, принимающая только два значения - истина и ложь - и предназначенная для выражения свойств объектов или связей между ними. Выражение, в котором утверждается или отрицается наличие каких-либо свойств у объекта, называется высказыванием.
Наиболее простым языком логики является исчисление высказываний, в котором отсутствуют переменные. Любому высказыванию можно приписать значение истинно или ложно. Отдельные высказывания могут соединяться связками И, ИЛИ, НЕ, которые называются булевыми операторами.
В общем случае модели, основанные на логике предикатов, описываются фор­мальной системой, которая задается четверкой:
М=(Т,Р,А,П), где Т - множество базовых элементов или алфавит формальной системы;
Р - множество синтаксических правил, с помощью которых можно строить син­таксически корректные предложения; А - множество аксиом или некоторых синтаксически правильных предложений, заданных априорно; П - правила продукций (правила вывода или семантические правила), с помо­щью которых можно расширять множество А, добавляя в него синтаксически правильные предложения.
Главное преимущество логических моделей представления знаний заключается в возможности непосредственно запрограммировать механизм вывода синтакси­чески правильных высказываний.
Логические модели удобны для представления логических взаимосвязей между фактами, они формализованы, строги (теоретические), для их использования имеется удобный и адекватный инструментарий, например, язык логического программирования Пролог.
В основе логического способа представления знаний лежит идея описания знаний о предметной области в виде некоторого множества утверждений, выраженных в виде логических формул, и получение решения построением вывода в некоторой формальной (дедуктивной) системе.
Знания, которые могут быть представлены с помощью логики предикатов, являются либо фактами, либо правилами. При использовании логических методов сначала анализируется структура предметной области, затем выбираются соответствующие обозначения и в заключении формируются логические формулы, представляющие собой закономерности рассматриваемой области. Множество таких формул является логической программой, содержащей информацию о ПО.
Например, в качестве языка логического программирования можно использовать ПРОЛОГ, а совокупность логических формул, состоящую из запроса, множества предложений программы и интерпретатора языка, можно рассматривать как алгоритм решения задач приложений.

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).
Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).
Продукционные системы делят на два типа — с прямыми и обратными выводами. При прямом выводе рассуждение ведется от данных к поиску цели, а при обратном производится поиск доказательства или опровержения некоторой цели— к данным. Часто используются комбинации прямой и обратной цепи рассуждений. Данные — это исходные факты, на основании которых запускается машина вывода — программа, перебирающая правила из базы.
Продукции выгодны для выражения знаний, которые могут принимать форму перехода между состояниями: ситуация ® действие; посылка ® заключение; причина ® следствие.
Продукции по сравнению с другими формами представления знаний имеют следующие преимущества:

· модульность;

· наглядность;

· единообразие структуры (основные компоненты продукционной системы могут применяться для построения интеллектуальных систем с различной проблемной ориентацией);

· естественность (вывод заключения в продукционной системе во многом ана­логичен процессу рассуждений эксперта);

· легкость внесения дополнений и простота механизма логического вывода;

· гибкость родовидовой иерархии понятий, которая поддерживается только как связи между правилами (изменение правила влечет за собой изменение в иерархии).

Недостатки:

· процесс вывода менее эффективен, чем в других системах, поскольку боль­шая часть времени при выводе затрачивается на непроизводительную проверку применимости правил;

· этот процесс трудно поддается управлению;

· сложно представить родовидовую иерархию понятий.

Семантические сети
Термин семантическая означает смысловая, а сама семантика — это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков.
Семантическая сеть — это ориентированный граф, вершины к оторого — понятия, а дуги — отношения между ними. Семантическая сеть описывает знания в виде сетевых структур.
Например, «программист сел за компьютер и отладил программу». Объектами являются: программист (А1), компьютер (А2), программа (А3). Объекты связаны отношениями: сел за компьютер (р1), отладил (р2), загружена в компьютер программа (р3). На рисунке 1 приведен пример этой простейшей семантической сети.

 

Рис. 1 Пример простейшей семантической сети.

Понятиями обычно выступают абстрактные или конкретные объекты, а отношения — это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

· класс — элемент класса;

· свойство — значение;

· пример элемента класса.

Самыми распространенными явля­ются следующие типы отношений:

 

· быть элементом класса, то есть объект входит в состав данного класса (ВАЗ 2106 является автомобилем);

· иметь свойства, то есть задаются свойства объектов (жираф имеет длин­ную шею);

· иметь значение, то есть задается значение свойств объектов (человек может иметь двух братьев);

· является следствием, то есть отражается причинно-следственная связь (астеническое состояние является следствием перенесенного простудного заболевания).

Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, отражающей поставленный запрос к базе.
Преимущества заключаются в простоте и наглядности описания предметной области. Однако последнее свойство с усложнением семан­тической сети теряется и, кроме того, существенно увеличивается время вывода. Также к недостаткам семантических сетей относят сложность обработка различ­ного рода исключений.
Фреймы
Фрейм (англ. frame — каркас или рамка) предложен М.Минским в 70-е гг. как структура знаний для восприятия пространственных сцен. Фрейм (дословно — «рамка») — это единица представ­ления знаний, детали которой могут изменяться в соответствии с текущей ситуацией. Фрейм - это минимально возможное описание сущности какого-либо явления, события, ситуации, процесса или объекта. Фрейм – это абстрактный образ для представления некоего стереотипа восприятия. В психологии и философии известно понятие абстрактного образа. В теории фреймов такой образ называется фреймом. Фреймом называется также и формализованная модель для отображения образа. Структуру фрейма можно представить так:
Имя фрейма:
(имя 1-го слота: значение 1-го слота)
(имя 2-го слота: значение 2-го слота)
. . . . . . . . . . . . . . . . . . . . . . . .
(имя N-го слота: значение N-го слота)

В качестве примера рассмотрим фрейм для понятия «взятие»:
«Взятие»:
(Субъект, X1);
(Объект, Х2);
(Место, ХЗ);
(Время, Х4);
(Условие, Х5).
В этом фрейме указаны имена слотов (субъект, объект и т.д.), но вместо их значений стоят переменные (XI, Х2 и т.д.). Такой фрейм называется фреймом-прототипом, или протофреймом. Протофреймы хранят знания о самом понятии. Например, понятие «взять» связано с наличием слотов с указанными именами. Взятие осуществляет X1 в месте ХЗ во время Х4, если выполнено условие Х5. Берет X1 нечто, обозначенное как Х2. Подставляя вместо всех переменных конкретные значения, получим конкретный факт-описание:
«Взятие»:
(Субъект, Робот);
(Объект, Деталь);
(Место, Приемный бункер);
(Время, Х4);
(Условие, В бункере есть деталь, а у робота ее нет).
Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы-экземпляры, которые создаются для отображения реальных фактических ситуаций на основе поступающих данных. Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:

· фреймы-структуры, использующиеся для обозначения объектов и понятий (заем, залог, вексель);

· фреймы-роли (менеджер, кассир, клиент);

· фреймы-сценарии (банкротство, собрание акционеров, празднование именин);

· фреймы-ситуации (тревога, авария, рабочий режим устройства) и др.

Важнейшим свойством теории фреймов является заимствованное из теории семантических сетей наследование свойств. И во фреймах, и в семантических сетях наследование происходит по АКО-связям (A-Kind-Of = это). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, т.е. переносятся, значения аналогичных слотов.
Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека, а также ее гибкость и наглядность.
Специальные языки представления знаний в сетях фреймов FRL (Frame Representation Language)и другие позволяют эффективно строить промышленные ЭС. Широко известны такие фреймо-ориентированные экспертные системы, как ANALYST, МОДИС

 


Дата добавления: 2018-02-28; просмотров: 434; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!