Зависимость тока от напряжения при обратном включении определяется по формуле



. (4)

Обратный ток почти не зависит от приложенного к p–n-переходу напряжения до определенного предела, после которого он начнет возрастать из-за генерации носителей заряда в области границы разнотипных полупроводников. При увеличении температуры и обратный ток, и прямой ток возрастают, причем обратный ток увеличивается гораздо быстрее прямого тока. При уменьшении температуры существенного снижения токов не происходит.

Изобразим полученные результаты на одном графике (рис. 1.7).

Рис. 1.7

Первый квадрант соответствует участку прямой ветви вольт-амперной характеристики, а третий квадрант – обратной ветви. При увеличении прямого напряжения ток р–n- перехода в прямом направлении вначале возрастает относительно медленно, а затем начинается участок быстрого нарастания прямого тока, что приводит к дополнительному нагреванию полупроводниковой структуры. Если количество выделяемого при этом тепла будет превышать количество тепла, отводимого от полупроводникового кристалла либо естественным путем, либо с помощью специальных устройств охлаждения, то могут произойти в полупроводниковой структуре необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток р–n-перехода необходимо ограничивать на безопасном уровне, исключающем перегрев полупроводниковой структуры. Для этого необходимо использовать ограничительное сопротивление последовательно подключенное с p–n-переходом.

При увеличении обратного напряжения, приложенного к р–n-переходу, обратный ток изменяется незначительно, так как дрейфовая составляющая тока, являющаяся превалирующей при обратном включении, зависит в основном от температуры кристалла, а увеличение обратного напряжения приводит лишь к увеличению скорости дрейфа неосновных носителей без изменения их количества. Такое положение будет сохраняться до величины обратного напряжения, при котором начинается интенсивный рост обратного тока – так называемый пробой р–n-перехода.

Возможны обратимые и необратимые пробои. Обратимый пробой – это пробой, после которого p–n-переход сохраняет работоспособность. Необратимый пробой ведет к разрушению структуры полупроводника.

Существуют четыре типа пробоя: лавинный, туннельный, тепловой и поверхностный. Лавинный и туннельный пробои объединяются под названием – электрический пробой, который является обратимым.

В полупроводниках с узким p–n-переходом (что обеспечивается высокой концентрацией примесей) возникает туннельный пробой, связанный с туннельным эффектом, когда под воздействием очень сильного поля носители заряда могут переходить из одной области в другую без затрат энергии (туннелировать через p–n-переход). Туннельный пробой наблюдается при обратном напряжении порядка нескольких вольт (до 10 В).

В полупроводниках с широким p–n-переходом может произойти лавинный пробой. Его механизм состоит в том, что в сильном электрическом поле может возникнуть ударная ионизация атомов p–n-перехода. Носители заряда на длине свободного пробега приобретают кинетическую энергию, достаточную для того, чтобы при столкновении с атомом кристаллической решетки полупроводника выбить из ковалентных связей электроны. Образовавшаяся при этом пара свободных носителей заряда «электрон-дырка» тоже примет участие в ударной ионизации. Процесс нарастает лавинообразно и приводит к значительному возрастанию обратного тока. Пробивное напряжение лавинного пробоя составляет десятки и сотни вольт.

К необратимым пробоям относят тепловой и поверхностный пробои.

Тепловой пробой возникает тогда, когда мощность, выделяемая в p–n-переходе при прохождении через него обратного тока, превышает мощность, которую способен рассеять p–n-переход. Происходит значительный перегрев перехода, и обратный ток, который является тепловым, резко возрастает, а перегрев – увеличивается. Это приводит к лавинообразному увеличению тока, в результате чего и возникает тепловой пробой p–n-перехода.

Распределение напряженности электрического поля в р–n-переходе может существенно изменить заряды, имеющиеся на поверхности полупроводника. Поверхностный заряд может привести к увеличению или уменьшению толщины перехода, в результате чего на поверхности перехода может наступить пробой при напряженности поля, меньшей той, которая необходима для возникновения пробоя в толще полупроводника. Это явление называют поверхностным пробоем. Большую роль при возникновении поверхностного пробоя играют диэлектрические свойства среды, граничащей с поверхностью полупроводника. Для снижения вероятности поверхностного пробоя применяют специальные защитные покрытия с высокой диэлектрической постоянной.

 

Вентильные свойства электронно-дырочного перехода.

 

P–n-переход, обладает свойством изменять свое электрическое сопротивление в зависимости от направления протекающего через него тока. Это свойство называется вентильным, а прибор, обладающий таким свойством, называется электрическим вентилем.

Рассмотрим p–n-переход, к которому подключен внешний источник напряжения Uвн с полярностью, указанной на рис. 1.8 «+» к области p-типа, «–» к области n-типа (прямое включение).

Тогда напряженность электрического поля внешнего источника Евн будет направлена навстречу напряженности поля потенциального барьера Е и, следовательно, приведет к снижению результирующей напряженности Ерез:

Ерез = ЕЕвн .

Это приведет, в свою очередь, к снижению высоты потенциального барьера и увеличению количества основных носителей, диффундирующих через границу раздела в соседнюю область, которые образуют так называемый прямой ток p–n-перехода. При этом вследствие уменьшения тормозящего, отталкивающего действия поля потенциального барьера на основные носители, ширина запирающего слоя d уменьшается (d¢ < d ) и, соответственно, уменьшается его сопротивление.

Рис. 1.8

По мере увеличения внешнего напряжения прямой ток p–n-перехода возрастает. Основные носители после перехода границы раздела становятся неосновными в противоположной области полупроводника и, углубившись в нее, рекомбинируют с основными носителями этой области, но, пока подключен внешний источник, ток через переход поддерживается непрерывным поступлением электронов из внешней цепи в n-область и уходом их из p-области во внешнюю цепь, благодаря чему восстанавливается концентрация дырок в p-области.

Введение носителей заряда через p–n-переход при понижении высоты потенциального барьера в область полупроводника, где эти носители являются неосновными, называют инжекцией носителей заряда.

При протекании прямого тока из дырочной области р в электронную область n инжектируются дырки, а из электронной области в дырочную – электроны.

Инжектирующий слой с относительно малым удельным сопротивлением называют эмиттером; слой, в который происходит инжекция неосновных для него носителей заряда, –базой.

На рис. 1.9изображена зонная энергетическая диаграмма, соответствующая прямому смещению p–n-перехода.

Рис. 1.9

При обратном включении p–n-перехода (рис. 1.10) напряженность электрического поля внешнего источника Евн будет направлена в ту же сторону, что и напряженность электрического поля E потенциального барьера. Высота потенциального барьера возрастает, а ток диффузии основных носителей практически становится равным нулю. Из-за усиления тормозящего, отталкивающего действия суммарного электрического поля на основные носители заряда ширина запирающего слоя d увеличивается (d¢ > d ), а его сопротивление резко возрастает.

Рис. 1.10

Теперь через р–n-переход будет протекать очень маленький ток, обусловленный перебросом суммарным электрическим полем на границе раздела, неосновных носителей, возникающих под действием различных ионизирующих факторов, в основном теплового характера. Процесс переброса неосновных носителей заряда называется экстракцией. Этот ток имеет дрейфовую природу и называется обратным током р–n-перехода.

На рис. 1.11 изображена зонная энергетическая диаграмма, соответствующая обратному смещению p–n- перехода.

Рис. 1.11

Выводы:

1. p–n-переход образуется на границе p- и n-областей, созданных в монокристалле полупроводника.

2. В результате диффузии в p–n-переходе возникает электрическое поле - потенциальный барьер, препятствующий выравниванию концентраций основных носителей заряда в соседних областях.

3. При отсутствии внешнего напряжения Uвн в p–n-переходе устанавливается динамическое равновесие: диффузионный ток становится равным по величине дрейфовому току, образованному неосновными носителями заряда, в результате чего ток через p–n-переход становится равным нулю.

4. При прямом смещении p–n-перехода потенциальный барьер понижается и через переход протекает относительно большой диффузионный ток.

5. При обратном смещении p–n-перехода потенциальный барьер повышается, диффузионный ток уменьшается до нуля и через переход протекает малый по величине дрейфовый ток.

Это говорит о том, что p–n-переход обладает односторонней проводимостью. Данное свойство широко используется для выпрямления переменных токов.

Ширина p–n-перехода зависит: от концентраций примеси в p- и n-областях, от знака и величины приложенного внешнего напряжения Uвн. При увеличении концентрации примесей ширина p–n-перехода уменьшается и наоборот. С увеличением прямого напряжения ширина p–n-перехода уменьшается. При увеличении обратного напряжения ширина p–n-перехода увеличивается.

 

Выпрямительные диоды, стабилитроны: схемы включения, основные характеристики, назначение.

 

Полупроводниковый диод – это полупроводниковый прибор с одним выпрямляющим электрическим переходом и двумя выводами, в котором используется то или иное свойство выпрямляющего электрического перехода.

Электрический переход чаще всего образуется между двумя полупроводниками с разным типом примесной электропроводности (p- и n-типа), одна из областей (низкоомная) является эмиттером, другая (высокоомная) – базой. Структура диода и условное обозначение в схемах выпрямительного диода показаны на рис. 1.12.

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

Рис. 1.12

Выпрямительные диоды также используются в цепях управления и коммутации, в ограничительных и развязывающих цепях, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов.

Конструктивно выпрямительные диоды оформляются в металлических, пластмассовых или керамических корпусах в виде дискретных элементов либо в виде диодных сборок, к примеру, диодных мостов выполненных в едином корпусе.

Выпрямительные диоды должны иметь как можно меньшую величину обратного тока, что определяется концентрацией неосновных носителей заряда или, в конечном счете, степенью очистки исходного полупроводникового материала. Типовая вольт-амперная характеристика выпрямительного диода описывается уравнением

      (5)

и имеет вид, изображенный на рис. 1.13.

Рис. 1.13

По вольт-амперной характеристике выпрямительного диода можно определить следующие основные параметры, влияющие на его работу.

1. Номинальный средний прямой ток Iпр ср ном– среднее значение тока, проходящего через открытый диод и обеспечивающего допустимый его нагрев при номинальных условиях охлаждения.

2. Номинальное среднее прямое напряжение Uпр ср ном– среднее значение прямого напряжения на диоде при протекании номинального среднего прямого тока. Этот параметр является очень важным для обеспечения параллельной работы нескольких диодов в одной электрической цепи.

3. Напряжение отсечки Uо , определяемое точкой пересечения линейного участка прямой ветви вольт-амперной характеристики с осью напряжений.

4. Пробивное напряжение Uпроб – обратное напряжение на диоде, соответствующее началу участка пробоя на вольт-амперной характеристике, когда она претерпевает излом в сторону резкого увеличения обратного тока.

5. Номинальное обратное напряжение Uобр ном– рабочее обратное напряжение на диоде. Его значение для отечественных приборов составляет 0,5Uпроб . Этот параметр используется для обеспечения последовательного включения нескольких диодов в одну электрическую цепь.

6. Номинальное значение обратного тока Iобр ном– величина обратного тока диода при приложении к нему номинального обратного напряжения.

7. Статическое сопротивление диода

 


Дата добавления: 2018-02-28; просмотров: 1817; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!