Перерождение понятия пространства, или смелость и вера



14. Понятие схемы представляет собой значительное расширение понятия алгебраического многообразия, и за счет этого полностью обновляет алгебраическую геометрию, завещанную моими предшественниками. Понятие топоса — расширение или, лучше сказать, метаморфоза понятия пространства. Тем самым оно обещает произвести сходное обновление топологии и, за ее пределами, геометрии. Уже сейчас, впрочем, оно успело сыграть решающую роль для расцвета новой геометрии (главным образом через посредство вышедших из него тем /-адических и кристальных когомологии, позволивших доказать гипотезы Вейля). Идея топоса, как и ее старшая сестра (почти близнец), имеет две дополняющие друг друга черты, существенные для полного и плодотворного обновления; вот они.

Во-первых, новое понятие не чересчур широко, в том смысле, что на новые «пространства» (лучше называть их топосами, чтобы не задеть чуткого уха){51} самые важные интуитивные представления и геометрические конструкции{52}, знакомые по старым добрым пространствам прежних времен, переносятся более или менее очевидным образом. Иначе говоря, для новых объектов имеется в распоряжении вся богатая гамма мысленных образов и ассоциаций, понятий и определенных технических средств, какие прежде не выходили за границы области объектов старинного толка.

Во-вторых, новое понятие в то же время достаточно широко, чтобы охватить все множество ситуаций, в которых, как раньше считалось, не место интуитивным представлениям «тополого-геометрической» природы — именно, тем, какие тогда связывались только с обыкновенными топологическими пространствами (и не без основания…).

С позиции гипотез Вейля решающим здесь является то обстоятельство, что новое понятие в действительности достаточно широко для того, чтобы позволить нам связать с любой «схемой» такое «обобщенное пространство», или «топос» (называемое «этальным топосом» рассматриваемой схемы). С самого начала было похоже, что определенные «когомологические инварианты» этого топоса (все, что есть внутри у этой смешной игрушки!) имели неплохой шанс обеспечить все необходимое для раскрытия полного смысла этих гипотез, и (кто знает!) предоставить, быть может, средства для их доказательства.

Впервые в моей жизни как математика я пользуюсь досугом, чтобы вызвать в памяти и (хотя бы только для себя самого) перенести на эти страницы совокупность главных тем и больших идей, направлявших мой труд. Это помогает мне лучше оценить место и значение каждой из этих тем, и «точек зрения», ими олицетворяемых, в большом геометрическом видении, которое их объединяет и из которого они вытекают. Именно благодаря этой работе явились во всем блеске две новаторские идеи, два двигательных нерва первого и бурного расцвета новой геометрии: идея схем и топосов.

Глубочайшей из двух мне сейчас представляется идея топосов, то есть вторая. Если бы случилось так, что в конце пятидесятых годов я бы не засучил рукава, чтобы затем упорно, день за днем, на протяжении двенадцати долгих лет развивать «теоретико-схемный инструмент», по изяществу и мощности совершенный — мне и тогда представляется почти немыслимым, чтобы за десять или двадцать последующих лет другие сумели бы удержаться и не взяться (хоть бы и против воли) за введение в окончательной форме понятия, которое очевидно напрашивалось, не соорудить как-нибудь пускай самых ветхих бараков из «сборных элементов», если не просторные и удобные жилища, как те, какие я собрал по камешкам и воздвиг своими руками. Но ни единого исполнителя не встретил я на математической сцене за три истекших десятилетия, который мог бы обладать такой наивностью, или невинностью, чтобы сделать (вместо меня) этот иной шаг, среди всех решающий, введя столь детски простую идею топосов (или хотя бы «ситусов»). И даже если предположить, что она со скрытым в ней робким обещанием уже кем-то любезно предоставлена — я не видел, будь то среди прежних моих друзей или учеников, никого, кто обладал бы достаточной смелостью, и прежде всего верой, чтобы довести до конца эту скромную идею{52} (до того с виду смехотворную, в то время как цель казалась удаленной бесконечно…): с первых ее неловких шагов до полной зрелости «искусства этальных когомологии», каковым она стала в моих руках, в течение последующих лет.

Всем коням царским

15. Да, река глубока; широки и спокойны воды моего детства, в царстве, как я думал, давно мною покинутом. Все царские кони могли бы прийти к ней заодно, и пить вволю, досыта, допьяна, никогда ее не исчерпав! Воды ее текут из ледников, жгучие, как дальние снега, и есть в них сладость глиняных равнин. Я только что говорил об одном из тех коней, которого ребенок привел напоить к реке, и тот пил в свое удовольствие, долго, не торопясь. Я видел там другого, пришедшего как-то по следам того же мальчишки напиться вдоволь, если повезет — но он едва успел хлебнуть из реки. Должно быть, кто-то спугнул его. И это все, много ли сказать. Издалека я смотрел, однако, как табуны лошадей, мучимых жаждой, числом несметные, блуждали по равнине. Но не далее как сегодня утром их ржание разбудило меня, сорвав с постели в неурочный час — меня, которому перевалило за шестьдесят, привыкшего к покою. Что же делать, я должен был встать. Горько было видеть их отощавшими клячами, в то время как ни в хорошей воде, ни в зеленых пастбищах не было недостатка. Но словно бы злые чары чьей-то враждебной тенью упали с небес, стремясь представить дело иначе — окутать надменным холодом все, что я знал теплым и гостеприимным, и закрыть подступы к щедрым водам. Или то проделки барышника, обман, подстроенный, чтобы сбить цену — кто знает? Или вдруг сталось так, что в царской земле нет больше детей, чтобы отвести коней к водопою? Ведь жаждущему коню нужен мальчишка, тот, кто отыщет дорогу к реке…

Говоря о «смелости» и «вере», я веду речь о качествах «нетехнической» природы, мне здесь представляющихся весьма существенными. Могу добавить к их перечню, из другой области, то, что я бы назвал «когомологическим чутьем», то есть интуицией особого рода, выработавшейся во мне при построении когомологических теорий. Я думал передать ее своим ученикам, занимающимся когомологиями. В перспективе шестнадцати лет, считая от моего ухода с математической сцены, констатирую, что ни в одном из них она не сохранилась.

Мотивы, или ядро в ядре

16. Идея топоса произошла от идеи схем, и в самый год появления схем, но по значимости далеко превзошла родительницу. Именно тема топоса, и никакая другая, стала «брачным ложем» геометрии и алгебре, топологии и арифметике, математической логике и теории категорий, миру непрерывного и государству структур «разрывных», или «дискретных» (полноводная река — она же…). Если теория схем — сердце новой геометрии, тема топоса — ее телесная оболочка, или жилище. Это то, что я задумал как самое обширное, чтобы уловить с изысканной точностью и передать языком, богатым геометрическими созвучиями, общую «суть» самых несхожих друг с другом ситуаций, из тех, что то и дело складываются в различных областях просторной математической вселенной.

Тема топоса, однако, слишком далека от того, чтобы познать успех, выпавший на долю схем. Я несколько раз при случае поговорю об этом на страницах «РС»; здесь же не место задерживаться на нелепых превратностях судьбы, поразивших это понятие. Две главные темы новой геометрии вышли все же из темы топоса, две дополняющие друг друга «когомологические теории», задуманные с целью обеспечить подход к гипотезам Вейля: тема эталъная (или l-адическая) и тема кристаллов. Первая из них оформилась в моих руках в /-адический когомологический инструмент; похоже, что сейчас это один из мощнейших математических инструментов столетия. Что же до темы кристаллов, чье существование свелось после моего ухода почти к оккультному, она под конец была эксгумирована под светом рампы и под видом заимствования, при обстоятельствах еще более странных, чем те, что сложились вокруг топоса.

/-адический когомологический инструмент стал, как я и предвидел, основным инструментом доказательства гипотез Вейля. Я сам доказал немалую их часть, и последний шаг был довершен мастерски, три года спустя после моего ухода, Пьером Делинем, самым блестящим из моих учеников-«когомологистов».

Я, впрочем, сформулировал к 1968 г. более сильную и, главное, более геометрическую версию гипотез Вейля. Они оставались «подпорченными» (если можно так выразиться!) необоримым арифметическим привкусом, хотя, конечно, самый дух этих гипотез в том, чтобы выразить и уловить «арифметическое» (или «дискретное») через посредство «геометрического» (или «непрерывного»){53}. В этом смысле вариант гипотез, предложенный мной, представляется мне более «верным» философии Вейля, чем его собственный вариант — философии, никогда не записанной на бумаге и редко проступавшей в речи, и ставшей, быть может, главной (невысказанной) мотивацией к необычайному расцвету новой геометрии в течение четырех истекших десятилетий{53}. Моя переформулировка состоит, по сути, в извлечении «квинтэссенции» того, что остается применимым в рамках алгебраических многообразий, называемых «абстрактными», классической теории Ходжа, имеющей дело с «обыкновенными» алгебраическими многообразиями{54}. Я назвал «стандартными гипотезами» (для алгебраических циклов) эту новую, совершенно геометрическую, версию знаменитых гипотез.

По моему ощущению, это был новый шаг, после развития когомологического /-адического инструмента, по направлению к этим гипотезам. Но в то же время и прежде всего, это был один из возможных принципов подхода к тому, что мне также представляется глубочайшей из тем, введенных мной в математику[3]{55}: к теме мотивов (порожденной «когомологической /-адической темой»). Эта тема — как сердце, или душа, самая затаенная, лучше всего скрытая от взгляда часть теории схем, которая сама по себе — ядро нового видения. И сколько ни есть ключевых явлений в стандартных гипотезах{56}, они могут рассматриваться как составляющие нечто вроде последней квинтэссенции темы мотивов, как вдохновение, жизненно важное для самой хрупкой и изощренной из всех тем, «ядра в ядре» новой геометрии.

Вот, в общих чертах, суть вопроса. Мы уже видели, как важно (в особенности с точки зрения гипотез Вейля) для простого числа р уметь построить «когомологические теории» для «многообразий (алгебраических) в характеристике р». Знаменитый «когомологический /-адический инструмент» предоставляет именно такую теорию, и даже бесконечное множество различных когомологических теорий, каждая из которых соответствует какому-нибудь простому числу /, отличному от характеристики р. Очевидно, здесь есть «недостающая теория», соответствующая случаю равенства между / и р. Чтобы с этим справиться, я нарочно выдумал другую когомологическую теорию (которая уже недавно упоминалась), называемую «теорией кристальных когомологии». Впрочем, для важного случая бесконечного р имеются в распоряжении еще три когомологические теории{57} — и никакой гарантии, что не придется рано или поздно ввести новые когомологические теории с совершенно аналогичными формальными свойствами. В противовес тому, что творится в обычной топологии, здесь мы поставлены перед фактом ошеломляющего изобилия различных когомологических теорий. Обрисовывается вполне отчетливое ощущение (сначала оно было довольно туманным), что все теории стремятся «свестись к одной», что они «дают одни и те же результаты»{58}. Именно затем, чтобы выразить это интуитивное ощущение «родства» между различными когомологическими теориями, я вывел на свет понятие мотива, отвечающего алгебраическому многообразию[4]. Этим термином я хотел навести на мысль, что речь идет об «общем мотиве» (или «общей причине»), скрытом в глубине огромного множества различных априори возможных когомологических инвариантов. Эти различные когомологические теории стали бы, как тематические разработки, каждая в «темпе», «ключе» и «ладу» («мажорном» или «минорном»), какие ей подобают — одного и того же «основного мотива» (называемого «мотивной когомологической теорией»), который в то же время является наиболее фундаментальным, или самым «утонченным» из всех этих различных «воплощений» темы (то есть из всех возможных когомологических теорий). Так, мотив, соответствующий алгебраическому многообразию, образовывал бы «окончательный», «в полном смысле этого слова», когомологический инвариант, из которого все прочие (соответствующие всевозможным когомологическим теориям) выводились бы, как «воплощения» музыкальной темы, ее различные «реализации». Все важнейшие свойства когомологии многообразия проявлялись бы (или «слышались бы») уже в соответствующем мотиве, как если бы знакомые свойства и структуры на отдельных когомологических инвариантах (/-адических или кристальных, например), стали бы попросту точными отражениями свойств и структур, заключенных в мотиве{59}.

Вот, выраженная языком не математической техники, но музыкальной метафоры, квинтэссенция еще одной идеи младенческой простоты, тонкой и смелой одновременно. Я развивал эту идею в рамках основных задач, которые считал наиболее неотложными, под заголовком «теория мотивов», или «философия (йога) мотивов», во все время с 1963 по 1969 гг. Эта теория, с ее завораживающим структурным богатством, во многом остается еще на стадии предположений{60}.

Я несколько раз говорю на страницах «РС» о «йоге мотивов» — о том, что представляется мне особенно важным. Здесь излишне рассуждать о том, о чем уже сказано в другом месте. Достаточно указать, что сами «стандартные гипотезы» берут начало в мире йоги мотивов, вытекая из нее естественным образом. В то же время они предоставляют принцип подхода к одной из возможных конструкций понятия мотива.

Это дает представление о том, до какой степени «мотивные когомологии» суть более тонкий инвариант, окруженный «арифметической формой» (если возможно отважиться на такое выражение) многообразия X куда плотнее, чем традиционные инварианты, чисто топологические. В моем восприятии мотивов они представляются, как что-то вроде «пуповины», незаметной, скрытой от взгляда, который связывает алгебро-геометрические свойства алгебраического многообразия со свойствами «арифметической» природы, воплощенными в его мотиве. Последний может рассматриваться, как объект, по духу «геометрический», но в котором «арифметические» свойства, определяемые геометрией, оказываются, так сказать, «обнаженными» и выставленными напоказ.

Итак, мотив представляется как глубочайший «инвариант формы» из тех, что вплоть до настоящего момента удавалось связать с алгебраическим многообразием, помимо его «мотивной фундаментальной группы». И тот и другой инварианты предстают передо мной, как «тени», проявления «мотивного гомотопического типа», которые остается описать (и о которых я скажу несколько слов в примечании «Обзор построек, или инструменты и видение» (PC IV, п. 178, см. постройка 5 (Мотивы), и в особенности стр. 1214)). Именно этот последний объект, мне кажется, должен стать наиболее совершенным воплощением ускользающего интуитивного представления об «арифметической (или мотивной) форме» произвольного алгебраического многообразия.

Эти гипотезы мне казались, кажутся и сейчас, одним из двух наиболее основополагающих вопросов алгебраической геометрии. Ни они, ни другая, также важнейшая, проблема (так называемая «проблема разрешения особенностей») не разрешены до сих пор. Но в то время как вторая из них высится, сегодня, как и сто лет назад, громадой великолепной и грозной, те, что я имел честь поставить, неоспоримым приговором моды отнесены (в годы, последовавшие за моим уходом с математической сцены, и в точности как собственно тема мотивов{61}) к разряду прелестной гротендической чепухи. Но я снова забегаю вперед…


Дата добавления: 2018-02-28; просмотров: 304; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!