Согласованные свободные интерпретации



 

Полагают, что интерпретация I и СИ Ih (того же базиса В) согласованы, если для любого логического выражения p справедливо Ih (p) = I (p).

Пусть, например, t = ` g (h (h (x)), g (h (x), g (x,a)))`, а интерпретация I3 совпадает с интерпретацией I1 из п. 1.2.4 за исключением лишь того, что I (x) = 3. Так как I3 (a) = 1; I3 (g) - функция умножения; I3 (h) - функция вычитания 1; получаем I3 (t) = ((3-1)-1)*((3-1)*(3*1)) = 6.

В этом случае Ih примера из п. 1.3.2. согласована с только что рассмотренной интерпретацией I3, а так же с I2 (рисок 1.3, в), но не согласована с I1 (рисунок 1.3, б).

Справедливы прямое и обратное утверждения, что для каждой интерпретации I базиса В существует согласованная с ней СИ этого базиса.

Так, например, выше было сказано, что Ih рассмотренного примера не согласована с I1. Что бы сделать Ih согласованной, необходимо условие Р (t) видоизменить: P (t) = 1, если число функциональных символов в t больше трех, P (t) = 0, в противном случае.

Можно поступить и по другому. Оставить Ih без изменения и согласовать с ней I1. Для этого необходимо будет заменить I1 (x) = 4, на I1 (x) = 3.

Введем важное вспомогательное понятие подстановки термов, используемое в дальнейшем. Если x1, …, xn (n ≥ 0) – попарно различные переменные, t1,..., tn – термы из Т, а p - функциональное или логическое выражение, то через p[t1/ x 1,..., t n /xn ] будем обозначать выражение, получающееся из выражения p одновременной заменой каждого из вхождений переменной xi на терм tI (i = 1, …, n). Например:

a [ y/x ] = a, f (x, y)[ y/x, x/y ] = f (y, x), g (x)[ g (x)/ x ] = g (g (x)), p (x)[ a/x ] = p (a).

Приведем без доказательства несколько важных утверждений:

Если интерпретация I и свободная интерпретация Ih согласованы, то программы (S, I) и (S, Ih) либо зацикливаются, либо обе останавливаются и I (val (S,Ih)) = val (S,I), т.е. каждой конкретной программе можно поставить во взаимно-однозначное соответствие свободно интерпретированную (стандартную) согласованную программу.

Если интерпретация и свободная интерпретация согласованы, они порождают одну и ту же цепочку операторов схемы.

Теорема Лакхэма – Парка – Паттерсона. Стандартные схемы S1 и S2 в базисе В функционально эквивалентны тогда и только тогда, когда они функционально эквивалентны на множестве всех свободных интерпретаций базиса В, т.е. когда для любой свободной интерпретации Ih программы (S1,Ih) и (S2,Ih) либо обе зацикливаются, либо обе останавливаются и

val (S1,I) = { I (val (S1 Ih)) = I (val (S2 Ih))} = val (S2,I).

Стандартная схема S в базисе В пуста (тотальна, свободна) тогда и только тогда, когда она пуста (тотальна, свободна) на множестве всех свободных интерпретаций этого базиса, т.е. если для любой свободной интерпретации Ih программа (S, Ih) зацикливается (останавливается).

Стандартная схема S в базисе В свободна тогда и только тогда, когда она свободна на множестве всех свободных интерпретаций базиса В, т. е. когда каждая цепочка схемы подтверждается хотя бы одной свободной интерпретацией.

 


Дата добавления: 2015-12-20; просмотров: 19; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!