Вопрос 1. Гехимия углерода и происхождение твердых горючих ископаемых.



Круговорот углерода в природе. Образование твердых горючих ископаемых обязано происходящему в биосфере, в частности в растениях, процессу фотосинтеза. Кларк углерода в литосфере равен 0,23 %. Среднее содержание углерода составляет (%): в ультраосновных и основных породах – 0,01, в средних – 0,02 и в кислых – 0,03. В осадочных породах 4/5 углерода находится в карбонатной форме, значительная доля приходится на органический углерод (угли, горючие сланцы, нефть и т. д.).

Общее количество углерода в природе достигает 610 . 109 т. Ежегодно не менее 1 млрд т углерода захороняется в осадок на длительное время, а значительное количество его навсегда уходит. За 1–1,5 тыс. лет весь углерод атмосферы мог быть связан в карбонатных и органических отложениях. Однако этого не происходит в связи с систематическим пополнением углекислого газа атмосферы за счет вулканических эманаций.

Часть органического вещества после отмирания организмов подвергается разложению бактериями с выделением при этом углерода в газообразном состоянии в виде СО2 и СН4. Другая часть органического вещества минерализуется, и углерод переходит в состав минеральных соединений (СаСО3, MgСО3, FeСО3 и др.). Минеральные соединения углерода в процессе погружения осадочных образований при нагревании разлагаются, в результате чего образуются СО2 и частично СH4, которые снова возвращают углерод в атмосферу. Циклический процесс круговорота углерода в природе имеет очень большое геохимическое значение. По подсчетам В. А. Успенского, длительность круговорота углерода колеблется от 100 до 300 лет.

Исходное углеообразующее вещество. По составу, строению и условиям жизни исходные для образования твердых горючих ископаемых растения разделяются на две основные группы: высшие и низшие.

Высшим растениям свойственны отчетливо выраженная корневая система, ствол, стебель, листья. Они приспособлены к жизни в наземных условиях.

Низшие растения сложены преимущественно одинаковыми клетками и обитают в водной среде.

Высшие растения состоят главным образом из целлюлозы, или клетчатки, лигнина, белков, жиров, восков и смол, а также гемицеллюлозы. Кроме того, каждая растительная клетка содержит некоторое количество минеральных веществ, дающих при сжигании смолу. Из-за преобладания в растениях тех или иных тканей, как, например, в высших растениях целлюлозы и лигнина, а в низших – жиров, восков и смол, химический состав различных групп растений (альги, папоротника, хвоща, хвойных и лиственных деревьев, травы) существенно различен.

Типы накопления исходного вещества. Различают два типа отложения исходного вещества – автохтонный и аллохтонный. Автохтонный тип – это такой тип отложения, при котором первичные организмы обитали на местах современного залегания каустобиолитов. Существуют две разновидности автохтонии – водная и наземная. Аллохтонный, или приносной, тип– это такой тип отложения, при котором растения после гибели транспортируются с места произрастания.

Главным признаком автохтонии служат корневые остатки или пни в почве пласта, наличие и сравнительно хорошая сохранность мелких частиц растений, в большинстве случаев не очень большое количество минеральных примесей. Для аллохтонного накопления характерны плохая сохранность и измельченность растительных остатков и в большинстве случаев – высокая минерализация полезного ископаемого.


Вопрос 2. Процессы разложения ОВ. Стадии преобразования.

Тление происходит при полном доступе кислорода, органическая часть растения полностью окисляется и уходит в форме газов в атмосферу. Из минеральной части растений образуются твердые остатки. Перегнивание – неполное тление при недостаточном доступе воздуха. Этот процесс характерен образованием – гумусовых веществ. Оторфение – промежуточное звено между перегниванием и гниением. Образующиеся в результате этого процесса твердые продукты состоят главным образом из гумусовых веществ, в состав которых входят гуминовые кислоты. Гниение – восстановительный процесс, происходящий при полной изоляции от доступа воздуха в застойных водах и приводящий, к образованию сапропелитов. Стадии преобразования органических остатков. На первой, биогенной (или биохимической), агентами разложения являются грибки, микробы и бактерии, которые перерабатывают погибшие растительные организмы. Вторая, химическая, стадия включает огромное число цепных химических реакций. Эти реакции идут в направлении создания коллоидной массы. В условиях обводненности без доступа кислорода исходное вещество подвергается гелификации. Процесс гелификации – это преобразование исходной растительной массы в коллоидные вещества – гель. При спорадически ограниченном доступе кислорода, создающем окислительную реакцию, происходит фюзенизация. Фюзенизация – это процесс изменения углеобразующего растительного материала в окислительной среде, лигнин и целлюлоза превращаются в необратимый твердый продукт – фюзен. Третья, геологическая, стадия начинается с захоронения осадка под минеральной кровлей. Исходное ОВ претерпевает изменение под воздействием возрастающей температуры и давления – углефикация. Осадок обезвоживается, уплотняется в 5–6 раз, полимеризуется, жидкие вещества превращаются в твердые. Гумусовая кислота, окрашивающая болотную воду в коричневый цвет, превращается в твердое гуминовое вещество, слагая так называемую «основную массу» угля. Процесс разложения низших растений и организмов, приводящий к образованию веществ, близких к углеводородам (УВ), называется битуминизацией. Необходимые предпосылки для углеобразования. Фитологические предпосылки создают возможность накопления исходного вещества. Уже в раннем архее (3,7–3,5 млрд лет тому назад) установлено наличие биогенных формаций с относительно высоким содержанием органического углерода. Активное накопление углеобразующей растительности началось в позднем силуре–раннем девоне, когда произошел выход водной растительности на сушу. Весь отрезок времени эволюции растений с кембрия подразделяется на четыре эры развития растительности: талассофит, палеофит, мезофит и кайнофит. Климатические предпосылки определяют как масштабы накопления исходного материала, так и его морфологию. В глобальном геолого-историческом плане выделялись области с гумидным климатом, благоприятные для торфо- и углеобразования, и области с аридным климатом, менее благоприятные для образования больших масс растительности. Геотектонические предпосылки играют важную роль в торфо- и углеобразовании, особенно медленные эпейрогенические вековые колебания с преобладанием нисходящих движений. Этими движениями обеспечивается наращивание мощности массива исходного органического материала, компенсирующего амплитуду погружения и его захоронение в недрах. Геоморфологические предпосылки обусловливают обстановку для сохранения накопившегося массива исходного вещества. Они действуют на стадии торфообразования вплоть до перекрытия торфяного массива осадочными минеральными образованиями.


Дата добавления: 2015-12-16; просмотров: 65; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!