Физический уровень.



Самый нижний уровень модели предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством. Определяемые на данном уровне параметры: тип передающей среды, тип модуляции сигнала, уровни логических «0» и «1» и т. д. На этом уровне работают концентраторы (хабы), повторители (ретрансляторы) сигнала и медиаконверторы.

Физический уровень определяет такие виды среды передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п.

Протоколы физического уровня OSI:

- USB, Firewire

- IEEE 802.15 (Bluetooth), IRDA

- Ethernet (включая 10BASE-T, 10BASE2, 10BASE5, 100BASE-TX, 100BASE-FX, 100BASE-T, 1000BASE-T, 1000BASE-SX и другие)

- DSL, ISDN

- 802.11 Wi-Fi

 

4. Семейство стандартов IEEE 802.x.

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей.

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семиуровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты, как для локальных, так и для глобальных сетей.

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

- 802.1 - Internetworking - объединение сетей;

- 802.2 - Logical Link Control, LLC - управление логической передачей данных;

- 802.3 - Ethernet с методом доступа CSMA/CD;

- 802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

- 802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

- 802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

- 802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

- 802.8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

- 802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

- 802.10 - Network Security - сетевая безопасность;

- 802.11 - Wireless Networks - беспроводные сети;

- 802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по приоритетами.

Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стандарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI.

Стандарты 802.3,802.4,802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу.

 

5. Сетевая архитектура Ethernet, ее основные характеристики. Формат кадра Ethernet.

Первоначальная версия Ethernet (1975г. - фирмы Xerox) представляла собой сеть со скоростью передачи 2,94 Мбит/с и объединяла более 100 компьютеров с помощью кабеля длинной в 1 км. Одной из ключевых характеристик созданной сети стал метод доступа CSMA/CD.

Стандарт Ethernet выполняет те же функции, что Физический и Канальный уровни модели OSI. Эта разработка лежит в основе спецификации IEEE 802.3.

Основные характеристики:

Основная топология шина
Другие топологии звезда-шина
Тип передачи узкополосная/ не модулированный
Метод доступа CSMA/CD
Спецификация IEEE 802.3
Скорость передачи данных 10, 100 и 1000 Мбит/с
Кабельная система толстый и тонкий COAX, UTP

Формат кадра:

Преамбула (7 байт) – сигнализирует о начале кадра.

Адреса – по 6 байт.

Тип (2 байта) – используется для идентификации протокола сетевого уровня (IP или IPX).

Данные (до 1500 байт) – передаваемая информация.

CRC (4 байта) – поле для проверки ошибок.

 

6. Метод доступа CSMA/CD. Коллизии и алгоритм их определения.

CSMA/CD (Carrier Sense Multiple Access with Collision Detection — множественный доступ с контролем несущей и обнаружением коллизий) — технология(802.3) множественного доступа к общей передающей среде в локальной компьютерной сети с контролем коллизий. CSMA/CD относится к децентрализованным случайным (точнее, квазислучайным) методам. Он используется как в обычных сетях типа Ethernet, так и в высокоскоростных сетях (Fast Ethernet, Gigabit Ethernet).

Протокол CSMA/CD работает на канальном уровне в модели OSI.

Коллизия — это наложение двух и более кадров (пакетов) от станций, пытающихся передать кадр в один и тот же момент времени из-за наличия задержки распространения сигнала по сети или наличия неисправной сетевой платы.

Этот метод используется исключительно в сетях с общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet.

Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Затем кадр передается по кабелю. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает по кабелю кадр-ответ. Адрес станции-источника также включен в исходный кадр, поэтому станция-получатель знает, кому нужно послать ответ.

При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общему кабелю. Для уменьшения вероятности этой ситуации непосредственно перед отправкой кадра передающая станция слушает кабель (то есть принимает и анализирует возникающие на нем электрические сигналы), чтобы обнаружить, не передается ли уже по кабелю кадр данных от другой станции. Если опознается несущая (carrier-sense, CS), то станция откладывает передачу своего кадра до окончания чужой передачи, и только потом пытается вновь его передать. Но даже при таком алгоритме две станции одновременно могут решить, что по шине в данный момент времени нет передачи, и начать одновременно передавать свои кадры.

Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD).

После обнаружения коллизии передающая станция обязана прекратить передачу и ожидать в течение короткого случайного интервала времени, а затем может снова сделать попытку передачи кадра.

Обнаружение коллизий используется для улучшения производительности CSMA с помощью прерывания передачи сразу после обнаружения коллизии и снижения вероятности второй коллизии во время повторной передачи.

 

7. Стандарты Ethernet 100 Мбит/сек.

Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)

100BASE-T — общий термин для обозначения стандартов, использующих в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.

100BASE-TX, IEEE 802.3u — развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.

100BASE-T4 — стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется.

100BASE-T2 — стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении — 50 Мбит/с. Практически не используется.

100BASE-SX — стандарт, использующий многомодовое волокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе.

100BASE-FX — стандарт, использующий одномодовое волокно. Максимальная длина ограничена только величиной затухания в оптическом кабеле и мощностью передатчиков, по разным материалам от 2х до 10 километров.

 

8. Стандарты Ethernet 1000 Мбит/сек. Перспективы развития технологии Ethernet.

Согласно наблюдениям Группы 802.3ba, требования к полосе пропускания для вычислительных задач и приложений ядра сети растут с разными скоростями, что определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet — 40 Gigabit Ethernet (или 40GbE) и 100 Gigabit Ethernet (или 100GbE). В настоящее время серверы, высокопроизводительные вычислительные кластеры, блэйд-системы, SAN и NAS используют технологии 1GbE и 10GbE, при этом в 2007 и 2008 гг. был отмечен значительный рост последней.

О Terabit Ethernet (так упрощенно называют технологию Ethernet со скоростью передачи 1 Тб/с) стало известно в 2008 году из заявления создателя Ethernet Боба Меткалфа на конференции OFC который предположил, что технология будет разработана к 2015 году, правда, не выразив при этом какой-либо уверенности, ведь для этого придется решить немало проблем. Однако, по его мнению, ключевой технологией, которая может обслужить дальнейший рост трафика, станет одна из разработанных в предыдущем десятилетии — DWDM – технология, позволяющая одновременно передавать несколько информационных каналов по одному оптическому волокну на разных несущих частотах.

 

9. Технология Token Ring. Маркерный доступ к среде.

Token ring — Технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» — протокол локальной сети, который находится на канальном уровне модели OSI. Он использует специальный трехбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.

Token Ring и IEEE 802.5 являются главными примерами сетей с передачей маркера. Сети с передачей маркера перемещают вдоль сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени (по умолчанию - 10 мс).

Если у станции, владеющей маркером, имеется информация для передачи, она захватывает маркер, изменяет у него один бит (в результате чего маркер превращается в последовательность «начало блока данных»), дополняет информацией, которую он хочет передать и отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает «раннего освобождения маркера» — early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.

 

10. Технология FDDI. Маркерный доступ к среде.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

- Повысить битовую скорость передачи данных до 100 Мб/с;

- Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;

- Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа. После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

 

11. Типы кабелей, используемых при построении вычислительных сетей, и их основные характеристики.

В проекты локальных вычислительных сетей (стандартных) закладываются на сегодня всего три вида кабелей:

- коаксиальный (двух типов):

· тонкий коаксиальный кабель (thin coaxial cable);

· толстый коаксиальный кабель (thick coaxial cable).

- витая пара (двух основных типов):

· неэкранированная витая пара (unshielded twisted pair - UTP);

· экранированная витая пара (shielded twisted pair - STP).

- волоконно-оптический кабель (двух типов):

· многомодовый кабель (fiber optic cable multimode);

· одномодовый кабель (fiber optic cable single mode).

Коаксиальный кабель (коаксиальная пара) — пара, проводники которой расположены соосно и разделены изоляцией.

- RG-8 и RG-11 — «Толстый Ethernet» (Thicknet), 50 Ом. Стандарт 10BASE5;

- RG-58 — «Тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE2:

· RG-58/U — сплошной центральный проводник,

· RG-58A/U — многожильный центральный проводник,

· RG-58C/U — военный кабель;

- RG-59 — телевизионный кабель (Broadband/Cable Television), 75 Ом. Российский аналог РК-75-х-х («радиочастотный кабель»);

- RG-6 — телевизионный кабель (Broadband/Cable Television), 75 Ом. Кабель категории RG-6 имеет несколько разновидностей, которые характеризируют его тип и материал исполнения. Российский аналог РК-75-х-х;

- RG-11- магистральный кабель, практически незаменим, если требуется решить вопрос с большими расстояниями. Этот вид кабеля можно использовать даже на расстояниях около 600 м. Укреплённая внешняя изоляция позволяет без проблем использовать этот кабель в сложных условиях (улица, колодцы). Существует вариант S1160 с тросом, который используется для надёжной проброски кабеля по воздуху, например, между домами;

- RG-62 — ARCNet, 93 Ом

Витая пара — вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Категории:

- CAT1 (полоса частот 0,1 МГц) — телефонный кабель, всего одна пара.

- CAT2 (полоса частот 1 МГц) — старый тип кабеля, 2 пары проводников, поддерживал передачу данных на скоростях до 4 Мбит/с, использовался в сетях Token ring и Arcnet.

- CAT3 (полоса частот 16 МГц) — 4-парный кабель, используется при построении телефонных и локальных сетей 10BASE-T и token ring, поддерживает скорость передачи данных до 10 Мбит/с или 100 Мбит/с по технологии 100BASE-T4 на расстоянии не дальше 100 метров. В отличие от предыдущих двух, отвечает требованиям стандарта IEEE 802.3.

- CAT4 (полоса частот 20 МГц) — кабель состоит из 4 скрученных пар, использовался в сетях token ring, 10BASE-T, 100BASE-T4, скорость передачи данных не превышает 16 Мбит/с по одной паре, сейчас не используется.

- CAT5 (полоса частот 100 МГц) — 4-парный кабель, использовался при построении локальных сетей 100BASE-TX и для прокладки телефонных линий, поддерживает скорость передачи данных до 100 Мбит/с при использовании 2 пар.

- CAT5e (полоса частот 125 МГц) — 4-парный кабель, усовершенствованная категория 5. Скорость передач данных до 100 Мбит/с при использовании 2 пар и до 1000 Мбит/с при использовании 4 пар. Кабель категории 5e является самым распространённым и используется для построения компьютерных сетей.

- CAT6 (полоса частот 250 МГц) — применяется в сетях Fast Ethernet и Gigabit Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 1000 Мбит/с и до 10 гигабит на расстояние до 50 м.

- CAT6a (полоса частот 500 МГц) — применяется в сетях Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 10 Гбит/с и планируется использовать его для приложений, работающих на скорости до 40 Гбит/с.

- CAT7 — спецификация на данный тип кабеля утверждена только международным стандартом ISO 11801, скорость передачи данных до 10 Гбит/с, частота пропускаемого сигнала до 600—700 МГц. Кабель этой категории имеет общий экран и экраны вокруг каждой пары. Седьмая категория, строго говоря, не UTP, а S/FTP (Screened Fully Shielded Twisted Pair).

Оптическое волокно — нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения.

Оптические волокна могут быть одномодовыми и многомодовыми. Диаметр сердцевины одномодовых волокон составляет от 7 до 9 микрон. Благодаря малому диаметру достигается передача по волокну лишь одной моды электромагнитного излучения, за счёт чего исключается влияние дисперсионных искажений. В настоящее время практически все производимые волокна являются одномодовыми.

Существует три основных типа одномодовых волокон:

1) Одномодовое ступенчатое волокно с несмещённой дисперсией (стандартное), определяется рекомендацией ITU-T G.652 и применяется в большинстве оптических систем связи.

2) Одномодовое волокно со смещённой дисперсией, определяется рекомендацией ITU-T G.653. В волокнах DSF с помощью примесей область нулевой дисперсии смещена в третье окно прозрачности, в котором наблюдается минимальное затухание.

3) Одномодовое волокно с ненулевой смещённой дисперсией, определяется рекомендацией ITU-T G.655.

Многомодовые волокна отличаются от одномодовых диаметром сердцевины, который составляет 50 микрон в европейском стандарте и 62,5 микрон в североамериканском и японском стандартах. Из-за большого диаметра сердцевины по многомодовому волокну распространяется несколько мод излучения — каждая под своим углом, из-за чего импульс света испытывает дисперсионные искажения и из прямоугольного превращается в колоколоподобный.

Многомодовые волокна подразделяются на ступенчатые и градиентные. В ступенчатых волокнах показатель преломления от оболочки к сердцевине изменяется скачкообразно. В градиентных волокнах это изменение происходит иначе — показатель преломления сердцевины плавно возрастает от края к центру. Это приводит к явлению рефракции в сердцевине, благодаря чему снижается влияние дисперсии на искажение оптического импульса. Профиль показателя преломления градиентного волокна может быть параболическим, треугольным, ломаным и т. д.

 

12. Оборудование физического и канального уровня технологии Ethernet.

Информационное взаимодействие на канальном уровне сетей стандарта Ethernet также разделено на дополнительные уровни, которые не предусмотрены стандартом OSI-7. Эти уровни называются LLC(Logical Link Control) и MAC(Media Access Control).

Для передачи данных по сети Ethernet используются блоки данных канального уровня — кадры. Особенность технологии Ethernet заключается в том, что она позволяет реализовать передачу данных по принципу «один — для всех» — «широковещание» (broadcasting). Для идентификации получателя информации в технологиях Ethernet используются 6-ти байтовые MAC–адреса.

Формат MAC – адреса обеспечивает возможность использования специфических режимов многоадресной адресации в сети Ethernet и, одновременно, исключить возможность появления в пределах одной локальной сети двух станций которые имели бы одинаковый адрес.

Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных.

10Base-5 - коаксиальный кабель диаметром 0,5 дюйма, называемый «толстым» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей).

10Base-2 - коаксиальный кабель диаметром 0,25 дюйма, называемый «тонким» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей).

10Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию на основе концентратора. Расстояние между концентратором и конечным узлом - не более 100 м.

10Base-F - волоконно-оптический кабель. Топология аналогична топологии стандарта 10Base-T. Имеется несколько вариантов этой спецификации - FOIRL (расстояние до 1000 м), 10Base-FL (расстояние до 2000 м), 10Base-FB (расстояние до 2000 м).

 

13. Основные функции и характеристики репитеров и концентраторов. Ограничения, возникающие при использовании концентраторов и необходимость структурирования вычислительной сети.

Репитеры (повторители), ретранслируют приходящие на них (на их порты) сигналы, восстанавливают их амплитуду и форму, что позволяет увеличивать длину сети. То же самое делают и простейшие репитерные концентраторы. Но помимо этой основной функции концентраторы Ethernet и Fast Ethernet обычно выполняют еще ряд функций по обнаружению и исправлению некоторых простейших ошибок сети. К этим ошибкам относятся следующие:

- ложная несущая (FCE - False Carrier Event);

- множественные коллизии (ЕСЕ - Excessive Collision Error);

- затянувшаяся передача (Jabber).

Топология построения сети с использованием концентраторов ≈ это шина, хотя физически сеть выглядит как звезда. Таким образом, в сети с загрузкой, примерно, 35%-40% коллизии возникают достаточно часто и существенно замедляют работу. Другим неудобством применения концентраторов являются максимально допустимое расстояние между концентраторами (5 м) и отсутствие автоматического преобразования скоростей.

В сетях с небольшим (10–30) количеством компьютеров чаще всего используется одна из типовых топологий — "общая шина", "кольцо", "звезда" или полносвязная сеть. Все перечисленные топологии обладают свойством однородности, то есть все компьютеры в такой сети имеют одинаковые права в отношении доступа к другим компьютерам (за исключением центрального компьютера при соединении "звезда"). Такая однородность структуры упрощает процедуру наращивания числа компьютеров, облегчает обслуживание и эксплуатацию сети.

Однако при построении больших сетей однородная структура связей превращается из преимущества в недостаток. В таких сетях использование типовых структур порождает различные ограничения, важнейшими из которых являются:

- ограничения на длину связи между узлами;

- ограничения на количество узлов в сети;

- ограничения на интенсивность трафика, который генерируют узлы сети.

Для снятия этих ограничений используются особые методы структуризации сети и специальное структурообразующее оборудование — повторители, концентраторы, мосты, коммутаторы, маршрутизаторы. Такого рода оборудование также называют коммуникационным, имея в виду, что с его помощью отдельные сегменты сети взаимодействуют между собой.

Различают:

1) Топологию физических связей (физическую структуру сети). В этом случае конфигурация физических связей определяется электрическими соединениями компьютеров, то есть ребрам графа соответствуют отрезки кабеля, связывающие пары узлов.

2) Топологию логических связей (логическую структуру сети). Здесь в качестве логических связей выступают маршруты передачи данных между узлами сети, которые образуются путем соответствующей настройки коммуникационного оборудования.

 

14. Основные функции и характеристики мостов и коммутаторов.

Мост (bridge) делит разделяемую среду передачи сети на части (часто называемые логическими сегментами), передавая информацию из одного сегмента в другой только в том случае, если такая передача действительно необходима, то есть если адрес компьютера назначения принадлежит другой подсети. Тем самым мост изолирует трафик одной подсети от трафика другой, повышая общую производительность передачи данных в сети. Локализация трафика не только экономит пропускную способность, но и уменьшает возможность несанкционированного доступа к данным, так как кадры не выходят за пределы своего сегмента, и злоумышленнику сложнее перехватить их.

Мосты используют для локализации трафика аппаратные адреса компьютеров. Это затрудняет распознавание принадлежности того или иного компьютера к определенному логическому сегменту — сам адрес не содержит подобной информации. Поэтому мост достаточно упрощенно представляет деление сети на сегменты — он запоминает, через какой порт на него поступил кадр данных от каждого компьютера сети, и в дальнейшем передает кадры, предназначенные для данного компьютера, на этот порт. Точной топологии связей между логическими сегментами мост не знает. Из-за этого применение мостов приводит к значительным ограничениям на конфигурацию связей сети — сегменты должны быть соединены таким образом, чтобы в сети не образовывались замкнутые контуры.

Коммутатор (switch) по принципу обработки кадров от моста практически ничем не отличается. Единственное его отличие состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированной микросхемой, которая обрабатывает кадры по алгоритму моста независимо от микросхем других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы — это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Ограничения, связанные с применением мостов и коммутаторов — по топологии связей, а также ряд других, — привели к тому, что в ряду коммуникационных устройств появился еще один тип оборудования — маршрутизатор (router1)) Маршрутизаторы более надежно и более эффективно, чем мосты, изолируют трафик отдельных частей сети друг от друга. Маршрутизаторы образуют логические сегменты посредством явной адресации, поскольку используют не плоские аппаратные, а составные числовые адреса. В этих адресах имеется поле номера сети, так что все компьютеры, у которых значение этого поля одинаковое, принадлежат одному сегменту, называемому в данном случае подсетью (subnet).

 

15. Техническая реализация коммутаторов.

Для ускорения операций коммутации нужны были специализированные процессоры со специализированными средствами обмена данными, как в первом коммутаторе Kalpana, и они вскоре появились. Сегодня все коммутаторы используют заказные специализированные БИС - ASIC, которые оптимизированы для выполнения основных операций коммутации. Часто в одном коммутаторе используется несколько специализированных БИС, каждая из которых выполняет функционально законченную часть операций. Сравнительно низкая стоимость современных коммутаторов по сравнению с их предшественниками 3-5-летней давности объясняется массовым характером производства основных БИС, на которых каждая компания строит свои коммутаторы.

Кроме процессорных микросхем для успешной неблокирующей работы коммутатору нужно также иметь быстродействующий узел для передачи кадров между процессорными микросхемами портов.

В настоящее время коммутаторы используют в качестве базовой одну из трех схем, на которой строится такой узел обмена:

- коммутационная матрица;

- разделяемая многовходовая память;

- общая шина.

Часто эти три способа взаимодействия комбинируются в одном коммутаторе.

Коммутационная матрица обеспечивает основной и самый быстрый способ взаимодействия процессоров портов, именно он был реализован в первом промышленном коммутаторе локальных сетей. Однако реализация матрицы возможна только для определенного числа портов, причем сложность схемы возрастает пропорционально квадрату количества портов коммутатора.

В коммутаторах с общей шиной процессоры портов связывают высокоскоростной шиной, используемой в режиме разделения времени.


Дата добавления: 2015-12-17; просмотров: 9; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!