Глобальный эволюционизм..549 22 страница



 

1 См.: Пуанкаре А. О науке. М., 1990.

 

 

Многие ученые, пытаясь осмыслить состояние физики, приходили к выводу о том, что само развитие науки показывает ее неспособность дать объективное представление о природе, что истины науки носят относительный характер, не содержат ничего абсолютного, что не может быть и речи ни о какой объективной реальности, существующей независимо от сознания людей. Пуанкаре, например, считал, что необходимо изменить взгляд на ценность науки, на характер истин, добываемых наукой. Если прежде их рассматривали как отражение действитель-

 

 

ных свойств мира, то новейшее развитие физики, по мнению Пуанкаре, заставляет отказаться от такого взгляда. Наука не способна открывать сущность вещей. Ничто не в силах открыть эту сущность. Научные истины носят конвенциональный характер, они лишь результат соглашений ученых между собой о том, как удобнее выразить то или другое относительное знание. Некоторые физики (Э. Мах, Р. Авенариус и др.) шли еще дальше и полностью переходили на позиции субъективного идеализма. Они исходили из того, что «материя исчезла» потому, что не природа дает нам законы, а мы устанавливаем их, и, вообще, всякий закон есть не что иное, как упорядочение наших субъективных ощущений, и т.д. Многие физики скатились на позиции «физического идеализма», т.е. отказа от основной посылки физического знания — признания материальности объекта физического познания.

 

На самом же деле проблема состояла в том, что к концу XIX в. методологические установки классической физики уже исчерпали себя и необходимо было изменять теоретико-методологический каркас естественно-научного познания. Возникла необходимость расширить и углубить понимание и самой природы, и процесса ее познания. Не существует такой абсолютной субстанции бытия, с познанием которой завершается прогресс науки. Как бесконечна, многообразна и неисчерпаема сама природа, так бесконечен, многообразен и неисчерпаем процесс ее познания естественными науками. Электрон так же неисчерпаем, как и атом. Каждая естественно-научная картина мира относительна и преходяща. Процесс научного познания необходимо связан с периодической крутой ломкой старых понятий, теорий, картин мира, методологических установок, способов познания. А «физический идеализм» является просто следствием непонимания необходимости периодической смены философско-методологических оснований естествознания [1].

 

1 В России анализ революций в естествознании на рубеже XIX—XX вв. был осуществлен В.И. Лениным в работе «Материализм и эмпириокритицизм», вышедшей в свет в 1909 г.

 

 

 

К концу XIX в. механистическая, метафизическая, предметоцентрическая методология себя исчерпала. Естествознание стремилось к новой диалектической, системоцентрической методологии. Поиски новой методологии были не простыми, сопряженными с борьбой мнений, школ, взглядов, философской и мировоззренческой полемикой. В конце концов в первой четверти XX в. естествознание нашло свои новые методологические ориентиры, разрешив кризис рубежа веков.

 

 

8.2. Астрономия

 

8.2.1. Триумф ньютоновской астрономии и... первая брешь в ней.

 

Открытие в 1846 г. восьмой большой планеты Солнечной системы можно назвать триумфом ньютоновской теории и картины мира. Открытие было осуществлено буквально «на кончике пера». И наличие этой планеты, и ее положение на небе в определенное время было математически вычислено по возмущениям, которые она вызывала в движении планеты Уран. Загадочные отклонения заметили еще в конце XVIII в. Их пытались объяснить по-разному: катастрофическим столкновением Урана с кометой; попытками изменить сам закон тяготения; и наконец, высказывалась гипотеза о влиянии более далекой планеты.

 

Эту труднейшую задачу решили независимо и почти одновременно два математика-астронома Дж. Адамc и У. Леверье. Летом 1846 г. Леверье сообщил свои расчеты берлинскому астроному Г. Галле, который и обнаружил 23 сентября 1846 г. всего в 52' от расчетного места новую планету. Название этой планеты традиционно было взято из древнегреческой мифологии — Нептун. Орбита Нептуна, удаленная от Солнца в среднем на 4,5 млрд км, значительно расширяла и границы Солнечной системы, и пределы познания ее человеком.

 

Блестящее, исключительно точное предсказание было еще одним выдающимся достижением классической механики и, казалось, навеки укрепило ньютоновскую астрономическую картину мира, тем более что оно дополнялось расчетами орбит других объектов Солнечной системы — комет, метеорных потоков, а также уточнением теории «векового» ускорения Луны и т.п. Вместе с тем повышение точности расчетов в теории движения Солнца и планет привело к открытию нового эффекта, которое имело далеко идущие последствия.

 

 

Исследуя в течение многих лет движение Меркурия, У. Леверье в 1859 г. установил, что скорость, с которой перигелий (точка орбиты планеты, ближайшая к Солнцу) обращается вокруг Солнца, несколько больше теоретически предсказываемой, а именно на 38" (по современным данным, на 43") в столетие. Такая высокая скорость перемещения перигелия Меркурия не могла быть объяснена классической теорией. Для ее объяснения выдвигались разные гипотезы: наличие между Солнцем и Меркурием гипотетической планеты Вулкан, зодиакального света, который излучают разреженные массы вблизи Солнца, и др. Все они не подтвердились.

 

И только в XX в. объяснение было найдено, но на основе не ньютоновской механики, а общей теории относительности (см. 9.2.2). Поэтому можно сказать, что открытие аномалий в движении перигелия Меркурия было первой брешью в ньютоновской астрономической картине мира, первым в астрономии предвестником грядущей революции в естествознании.

 

Таким же предвестником, хотя и менее известным, явилось формулирование гравитационного (X. Зелигер, 1895) и фотометрического (Г.В. Ольберс, 1826) парадоксов ньютоновской космологии. Согласно первому, из закона всеобщего тяготения при его применении к бесконечной вселенной следует, что в каждой точке пространства сила тяготения должна быть бесконечной, а значит привести ко всеобщему коллапсу. А согласно второму, бесконечное количество звезд (в бесконечном пространстве), яркость которых не зависит от расстояния, должно привести к сплошному свечению всего неба с яркостью Солнца. Попытки разрешить эти парадоксы в рамках классической механики, опираясь на иерархические модели Ламберта (см. 7.2.1) (К.В. Шарлье, 1908), во многом были формальными, сопровождались введением дополнительных искусственных ограничений на соотношение масс и размеров космических систем, в конце концов носили паллиативный характер.

 

8.2.2. Формирование астрофизики: проблема внутреннего строения звезд. Важнейшее событие в астрономии второй половины XIX в. – возникновение астрофизики. К открытиям XIX в., которые повлекли за собой возникновение и бурное развитие астрофизики, следует в первую очередь отнести: открытие фотографии и спектрального анализа, эффекта Доплера, создание статистической термодинамики. Астрофизика формировалась в русле решения ключевой астрономической проблемы – проблемы строения звезд и источников их энергии.

 

 

Открытие закона сохранения энергии поставило вопрос о физическом источнике энергии Солнца и звезд. Первым попытался его решить Р. Майер, предложивший гипотезу о разогреве Солнца за счет падения на него метеоритов (1848). Качественно новые возможности научного исследования сложились после открытия Г. Кирхгофом и Р. Бунзеном (1859) спектрального анализа. Появилась возможность определять химический состав звезд, т.е. то, что многие мыслители считали вообще непознаваемым (например, О. Конт, 1852). В 1861 г. Кирхгоф определил химический состав солнечной (и, следовательно, звездных) атомосферы. Так была создана почва для формирования научной астрофизики и создания теории строения звезд.

 

Во второй половине XIX в. окончательно утвердилось представление о звездах как о колоссальных газовых шарах, плотных и горячих в центре и разреженных на периферии. Для объяснения энергии звезд Кельвин и Гельмгольц выдвинули идею их гравитационного сжатия. Во время гравитационного сжатия должна выделяться значительная энергия. Однако вскоре выяснилось, что если придерживаться такой гипотезы, то нужно признать, что Солнце... моложе Земли! Длительность «жизни» звезд по этой гипотезе исчислялась всего лишь десятками миллионов лет, в то время как геологи убедительно определяли возраст Земли в несколько миллиардов лет.

 

Едва возникнув, астрофизика зашла в тупик. Стало ясно, что нужны принципиально новые физические представления для решения ключевой астрономической проблемы – источника энергии звезд. Такие представления появились уже с созданием новых фундаментальных физических теорий – релятивистской и квантовой физики.

 

 

 

 

8.3. Биология

 

8.3.1. Утверждение теории эволюции Ч. Дарвина. Нужно определенное время, чтобы новая теория окончательно утвердилась в науке. Процесс утверждения теории есть процесс превращения предпосылок теории в ее неотъемлемые компоненты, логически выводимые из оснований теории. При этом изменяется множество различных понятий, представлений, допущений, гипотез и других средств познавательной деятельности, ценностных и методологических компонентов познания.

 

Эволюционная теория Ч. Дарвина — сложнейший синтез самых различных биологических знаний, в том числе опыта практической селекции. Поэтому процесс утверждения теории затрагивал самые разнообразные отрасли биологической науки и носил сложный, подчас драматический характер, протекал в напряженнейшей борьбе различных мнений, взглядов, школ, мировоззрений, тенденций и т.д.

 

Против теории естественного отбора ополчились не только сторонники креационистских воззрений и антиэволюционисты (А. Седжвик, Р. Оуэн, Л. Агассис, А. Мильн-Эдвардс, А. Катрфаж, Г. Меррей, С. Карпентер и др.), но и естествоиспытатели, выдвигавшие и обосновывавшие другие эволюционные концепции, построенные на иных, чем дарвиновская теория, принципах. Среди них: неоламаркизм (К.В. Негели и др.), мутационизм (С.И. Коржинский с его идеей гетерогенезиса, т.е. скачкообразного возникновения новых видов, и др.), неокатастрофизм (Э. Зюсс и др.), телеологические концепции разного рода (Р.А. Келликер с идеей автогенетического «стремления к прогрессу»; А. Виганд, признававший существование идеальной «образовательной силы» эволюционного процесса, которая, по его мнению, уже иссякла и потому эволюция прекратилась, и др.).

 

Более того, в самом дарвиновском учении выделились три относительно самостоятельных направления, каждое из которых по-своему понимало, дополняло и совершенствовало воззрения Ч. Дарвина. Первое из них — так называемый ортодоксальный дарвинизм, признававший отбор единственным движущим фактором эволюции (А.Р. Уоллес, А. Грей, Е. Паультон и др.). Второе направление возглавлялось Э. Геккелем, так называемый геккелевский дарвинизм, признававший в качестве факторов эволюции как естественный отбор, так и ламарковское упражнение — неупражнение органов. Третье направление получило название неодарвинизма, возглавлявшееся А. Вейсманом, который категорически отрицал наследование приоб-

 

 

ретенных признаков, а принцип отбора распространял на соревнование не только между особями, но и между клетками. Будучи необходимым логическим звеном в развитии дарвинизма, такая дифференциация объективно влекла за собой ослабление лагеря дарвинистов, снижение полемической остроты их выступлений, тем более что между этими направлениями со временем нарастало все большее взаимопонимание.

 

Все это привело к тому, что картина развития биологии во второй половине XIX в. была очень пестрой, мозаичной, заполненной противоречиями, драматическими событиями, страстной борьбой мнений, школ, направлений, взаимным непониманием позиций, а часто и нежеланием понять точку зрения другой стороны, обилием поспешных, непродуманных и необоснованных выводов, опрометчивых прогнозов и замалчивания выдающихся достижений. В этом насыщенном самыми разнообразными красками полотне отразились борьба материализма и идеализма, метафизики и диалектики, предметоцентризма и системоцентризма, противоречия социально-культурного контекста развития естествознания.

 

Вокруг роли, содержания, интерпретации принципов дарвиновской теории велась острая и длительная борьба, особенно вокруг принципа естественного отбора. Важнейшими здесь было два вопроса. Первый состоял в том, может ли естественный отбор, выполняя функцию отсева нежизнеспособных особей, наряду со стабилизирующей выполнять и творческую роль, обеспечивать поступательность эволюции.

 

Второй вопрос, особенно беспокоивший Ч. Дарвина («кошмар Дженкина» (см. 8.3.2), прямо вытекал из незнания тогда дискретности наследственных факторов: каким образом благоприятные признаки выживших при отборе особей сохраняются в их потомстве и не растворяются при скрещивании носителей этих признаков с теми особями, которые несут в себе иные признаки?

 

Можно указать на четыре основных явления в системе биологического познания второй половины XIX — начала XX в., которые были вехами в процессе утверждения принципов теории естественного отбора:

 

 

+ возникновение и бурное развитие так называемого филогенетического направления, вдохновителем которого был Э. Геккель;

+ формирование эволюционной биологии — проникновение эволюционных представлений во все отрасли биологической науки;

+ создание экспериментально-эволюционной биологии;

+ синтез принципов генетики и дарвинизма и создание основ синтетической теории эволюции.

 

Объяснение эмпирических аномалий и вплетение их в систему дарвиновского учения наиболее ярко воплотилось в бурном развитии в 1860—1870-х гг. филогенетического направления, ориентированного на установление родственных связей между видами, на поиски переходных форм и предковых видов, на анализ генезиса крупных таксонов, изучение происхождения органов и др. Общая задача филогенетического направления, как сформулировал ее Геккель, состояла в создании «филогенетического древа» растений и животных на основе прежде всего данных сравнительной анатомии, палеонтологии и сравнительной эмбриологии.

 

В рамках филогенетического направления были вскрыты и исследованы закономерности, имеющие общебиологическую значимость: биогенетический закон, согласно которому онтогенез есть краткое и сжатое повторение филогенеза (Э. Геккель, Ф. Мюллер, А.О. Ковалевский, И.И. Мечников), закон необратимости эволюции (Л. Долло), закон более ранней закладки в онтогенезе прогрессивных органов (Э. Менерт), закон анадаптивных и инадаптивных путей эволюции (В.О. Ковалевский), принцип неспециализированности предковых форм (Э. Коп), принцип субституции органов (Н. Клейненберг), закон эволюции органов путем смены функций (А. Дорн) и др.

 

Не все из этих закономерностей рассматривались биологами как формы обоснования и подтверждения дарвиновской теории. Более того, на базе некоторых из них выдвигались новые концепции эволюции, которые, по замыслу их авторов, должны были опровергнуть дарвиновскую теорию и заменить ее новой эволюционной теорией. Это характерно для периода утверждения любой фундаментальной теории: пока теория окончательно не сложилась, не подчинила себе свои предпосылки, не продемонстрировала свои предсказательные возможности, способность объяснять факты предметной области, часты попытки заменить ее другими теориями, построенными на иных принципах.

 

 

Обобщение принципов эволюционной теории, выявление пределов, при которых они не теряют своего значения, проявилось в интенсивном формировании комплекса эволюционной биологии (т.е. эволюционных направлений в системе биологического знания — систематики, палеонтологии, морфологии, эмбриологии, биогеографии и др.), имевшем место во второй половине XIX в. Так возникли эволюционная морфология, эволюционная палеонтология, эволюционная эмбриология, историческая биогеография и др. Среди интересных и важных исследований в русле этого направления следует особо выделить работы М. Вагнера, впервые (1868) высказавшего мысль о том, что для возникновения нового вида одного естественного отбора недостаточно, и нужна еще пространственная изоляция.

 

Возникновение экспериментально-эволюционной биологии во многом было вызвано необходимостью эмпирического обоснования и теоретического утверждения принципов дарвиновской теории, экспериментальной проверки и углубления понимания факторов и законов эволюции. Особенно это касалось принципа естественного отбора, где яркие экспериментальные результаты получили в конце XIX в. В. Уэлдон (1898), Е. Паультон (1899) и др.

 

Завершение утверждения принципов дарвиновской теории происходит уже в начале XX в., когда сформировалась синтетическая теория эволюции, внутренне интегрировавшая дарвинизм, генетику и экологию.

 

Таким образом, к рубежу XIX—XX вв. биология, как и физика, оказалась в состоянии глубокого кризиса, вызванного в первую очередь устаревшим содержанием методологических установок классической биологии. Кризис проявился прежде всего в многообразии и противоречии оценок и интерпретаций сущности эволюционной теории и интенсивно накапливавшихся данных в области генетики.

 

8.3.2. Становление учения о наследственности (генетики). Истоки знаний о наследственности весьма древние. Наследственность как одна из существенных характеристик живого известна очень давно, представления о ней складывались еще в эпоху античности. Долгое время вопрос о природе наследственности находился в ведении эмбриологии, в которой вплоть до XVII в. господствовали фантастические представления.

 

 

Во второй половине XVIII в. учение о наследственности обогащается новыми данными — установлением пола у растений, искусственной гибридизацией и опылением растений, а также отработкой методики гибридизации. Одним из основоположников этого направления является Й.Г. Кельрейтер, тщательно изучавший процессы оплодотворения и гибридизации. Он открыл явление гетерозиса — более мощного развития гибридов первого поколения, которое он не мог правильно объяснить. Опыты по искусственной гибридизации растений позволили опровергнуть концепцию преформизма. В этом отношении ботаника оказалась впереди зоологии.

 

Во второй половине XVIII — начале XIX в. наследственность рассматривалась как свойство, зависящее от количественного соотношения отцовских и материнских компонентов. Считалось, что наследственные признаки гибрида являются результатом взаимодействия отцовских и материнских компонентов, их борьбы между собой, а исход этой борьбы определяется количественным участием, долей того и другого. Так, при получении растительных гибридов предполагалось, что в передаче признаков решающую роль играет количество пыльцы.

 

В первой половине XIX в. стали складываться непосредственные предпосылки учения о наследственности и изменчивости — генетики. Качественным рубежом здесь, по-видимому, оказались два события. Первое — создание клеточной теории. Старая (философская, идущая от XVIII в.) идея единства растительного и животного миров должна была получить конкретно-научное выражение в форме теории, которая базируется на том, что инвариантные характеристики органического мира должны иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов.

 

Второе событие — выделение объекта генетики, т.е. явлений наследственности как специфической черты живого, которую не следует растворять в множестве свойств индивидуального развития организма. Такой подход сформулирован у О. Сажрэ и в полной мере получил свое развитие в творчестве Г. Менделя.

 

 

Создание клеточной теории было важнейшим шагом на пути разработки научных воззрений на наследственность и изменчивость. Познание природы наследственности предполагало выяснение вопроса, что является универсальной единицей структурной организации растительного и животного миров. Ведь инвариантные характеристики органического мира должны иметь и свое структурное выражение. Фундаментальной философской идеей, которая привела к открытию клетки, была идея единства растительного и животного миров; она пробивала себе дорогу в общественном сознании еще в XVII в., начиная с трудов Р. Декарта, Г.В. Лейбница, а позже — французских материалистов XVIII в., особенно Д. Дидро, Ж. Ламетри и др. Как четкий ориентир для биологических исследований она была сформулирована К.Ф. Вольфом, Л. Океном, Ж. Бюффоном, И.В. Гете, Э. Жоффруа Сент-Илером и др.

 

Следующий шаг на этом пути состоял в том, чтобы от общей идеи единства органического мира прийти к выводу, что такое единство должно иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Именно в этом направлении работали многие ученые (П.Ж. Тюрпен, Я. Пуркине, Г. Валентин, А. Дютроше и др.), но только Т. Шванну удалось окончательно прояснить данный вопрос. Трудность состояла в том, что растительные и животные клетки, с одной стороны, а также клетки разных тканей животных — с другой, выглядят мало похожими друг на друга, если использовать те приборы, которые были в распоряжении биологов начала XIX в. Сходным и легко различимым элементом всех клеток является ядро. Мысль об этом сформулировал М. Шлейден. Опираясь на нее, Т. Шванн разработал основные положения своей клеточной теории. В основе ее лежало утверждение, что клеткообразование -универсальный принцип развития организма или, как писал Шванн, «всем отдельным элементарным частицам всех организмов свойствен один и тот же принцип развития» [1]. Таким образом, клетка была выделена как универсальная инвариантная единица строения организма.

 

1 Шванн Т. Микроскопические исследования о соответствии в структуре и росте животных и растений. М.; Л., 1939. С. 79.

 

 

 

Ближайшим следствием из основ клеточной теории стало представление, в соответствии с которым процесс клеткообразования регулируется каким-то единым, универсальным механизмом, за которым скрывается загадка наследственности и изменчивости. Указание на существование такого механизма, по сути, являлось первым шагом на пути выделения качественно своеобразной предметной области учения о природе наследственности. Другими словами, создание клеточной теории позволяло «выйти» на объект генетики.

 

Особое место в истории учения о наследственности занимает творчество О. С а ж р э. Заслуга его в том, что он первый в истории учения о наследственности начал исследовать не все, а лишь отдельные признаки скрещивающихся при гибридизации растений. На этой основе (изучая гибридизацию тыквенных) он приходит к выводу, что неверна старая точка зрения, будто признаки гибрида всегда есть нечто среднее между признаками родителей. Признаки в гибриде не сливаются, а перераспределяются. Сажрэ писал: «Итак, мне представляется в конце концов, что обычно сходство гибрида с обоими родителями заключается не в тесном слиянии различных свойственных им в отдельности признаков, а, скорее, в распределении, равном или неравном, этих признаков» [1]. Иначе говоря, он первым понял корпускулярный, дискретный характер наследственности и выделил наследственность как специфический объект познания, отличный от процесса индивидуального развития организма, разграничил предмет генетики (как учения о наследственности) от предмета эмбриологии и онтогенетики (как учений об индивидуальном развитии организма). С работ Сажрэ начинается собственно научная генетика.

 

1 Мендель Г., Нодэн Ш., Сажрэ О. Избранные работы. М., 1968. С. 63.

 

 

Вторая половина XIX в. — период не только создания теории естественного отбора, но и особенно бурного развития других важнейших отраслей биологической науки — эмбриологии (К. Бэр), цитологии (М. Шлейден, Т. Шванн, Р. Вирхов, X. Моль и др.), физиологии (Г. Гельмгольц, Э. Дюбуа-Реймон, К. Бернар); тогда же были заложены основы органической химии (Ф. Вёлер, Ю. Либих, М. Бертло), получены существенные результаты в области гибридизации и явлений наследственности (провозвестник мутационной теории Ш. Нодэн, Г. Мендель) и др.

 

 

Во второй половине XIX в. был коренным образом усовершенствован микроскоп, разработаны новые методы гистологических и цитологических наблюдений. Это позволило значительно продвинуться в изучении структуры клетки и ее функций.

 

Среди важнейших открытий данного периода можно указать следующие: описание митотического деления клеток и особенностей поведения хромосом (И.Д. Чистяков, Э. Страсбургер и др., 1873—1875); установление того, что первичное ядро зародышевой клетки возникает путем слияния ядер сперматозоидов и яйцеклетки (О. Гертвиг, Г. Фоль, 1875—1884); открытие продольного разделения хромосом и его закономерностей — образование веретена, расхождение хромосом к полюсам и проч. (В. Флемминг, 1888); установление закона постоянства числа хромосом для каждого вида (Т. Бовери, Э. Страсбургер, 1878); установление того, что в половых клетках содержится половинный набор хромосом по сравнению с соматическими клетками (Э. ван Бенеден, 1883); описание процесса майоза и объяснение механизма редукции числа хромосом (В.И. Беляев, О. Гертвиг, 1884) и др. В 1883—1885 гг. в работах А. Вейсмана, О. Гертвига, Э. Страсбургера, В. Ру была сформулирована ядерная гипотеза наследственности, которая впоследствии, уже в начале XX в., развилась в хромосомную теорию наследственности.

 

Важнейшее событие в генетике XIX в. — формулирование Г. Менделем его знаменитых законов. Развивая идеи, содержащиеся в работах Сажрэ, Мендель рассматривал не наследуемость всех признаков организма сразу, а выделял наследуемость единичных, отдельных признаков, абстрагируя их от остальных, удачно применяя при этом вариационно-статистический метод, демонстрируя эвристическую мощь математического моделирования в биологии. Открытие Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в гетерозиготном состоянии. Это устранило одно из самых серьезных возражений против дарвиновской теории эволюции, которое было высказано английским инженером Ф. Дженкином, утверждавшим, что величина полезного наследственного изменения, которое может возникать у любой особи, в последующих поколениях будет уменьшаться и постепенно приближаться к нулю.

 

 

Открытие Менделя опередило свое время. Новаторское значение открытых им законов наследственности не было оценено современниками: в сознании биологов еще не созрели необходимые предпосылки научного учения о наследственности; они сложились лишь в самом начале XX в.

 

Раздел II

Природа в современной естественно-научной картине мира

 

 

СОВРЕМЕННАЯ ФИЗИЧЕСКАЯ КАРТИНА

 

9. НАУЧНАЯ РЕВОЛЮЦИЯ В ФИЗИКЕ НАЧАЛА XX в.: ВОЗНИКНОВЕНИЕ РЕЛЯТИВИСТСКОЙ И КВАНТОВОЙ ФИЗИКИ

 

В начале XX в. кризис в физике разрешается с созданием двух новь способов физического познания — релятивистского и квантового. На i основе формируется неклассическая физика и новая, современная физическая картина мира.

 

 

9.1. Создание специальной теории относительности

 

9.1.1. Фундаментальные противоречия в основаниях классической механики. В начале XX в. на смену классической механике пришла новая фундаментальная теория — специальная теория относительности (СТО). Созданная усилиями ряда ученых, прежде всего А. Эйнштейна, она позволила непротиворечиво объяснить многие физические явления, которые не укладывались в рамки классических представлений. В первую очередь это касалось закономерностей электромагнитных явлений в движущихся телах. Создание теории электромагнитного поля и экспериментальное доказательство его реальности поставили перед физиками задачу выяснить, распространяется ли принцип относительности движения (сформулированный еще Галилеем), справедливый для механических явлений, на явления, присущие электромагнитному полю. Во всех инерциальных системах (т.е. движущихся прямолинейно и равномерно друг по отношению к другу) применимы одни и те же законы механики. Но справедлив ли принцип, установленный для механических движений материальных объектов, для немеханических явлений, особенно тех, которые представлены полевой формой материи, в частности электромагнит-

 

 

Ответ на этот вопрос требовал изучения закономерностей взаимосвязи движущихся тел с эфиром, но не как с механической средой, а как со средой — носителем электромагнитных колебаний. Отдаленные истоки такого рода исследований складывались еще в XVIII в. в оптике движущихся тел. Впервые вопрос о влиянии движения источников света и приемников, регистрирующих световые сигналы, на оптические явления возник в связи с открытием аберрации света английским астрономом Брадлеем в 1728 г. (см. 7.1). Данный вопрос применительно к волновой теории света был значительно более сложным, чем для теории, основанной на представлении о корпускулярной природе света. Его решение требовало введения ряда гипотетических допущений относительно явлений, которые очень сложно выявить в опыте: как взаимодействуют весомые тела и эфир (полагали, что эфир проникает в тела); отличается ли эфир внутри тел от эфира, находящегося вне их, а если отличается, то чем; как ведет себя эфир внутри тел при их движении, и т.д. В физике сложилось три различных интерпретации характера взаимодействия вещества и эфира.


Дата добавления: 2016-01-05; просмотров: 23; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!