Емкостный элемент (конденсатор)



Условное графическое изображение конденсатора приведено на рис. 3,а.

Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними

и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная диэлектрическая проницаемость =const. В этом случае зависимость представляет собой прямую линию, проходящую через начало координат, (см. рис. 3,б) и

.

У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является функцией напряженности поля, что обусловливает нелинейность зависимости (рис. 3,б). В этом случае без учета явления электрического гистерезиса нелинейный конденсатор характеризуется статической и дифференциальной емкостями.

§ 2.2. Источник ЭДС и источник тока. Источник электрической энергии характеризуется ЭДС Е и внутренним сопротивлением Rв. Если через него под действием ЭДС Е протекает ток I, то напряжение на его зажимах U = Е - IRв при увеличении I уменьшается. Зависимость напряжения U на зажимах реального источника от тока I изображена на рис. 2.2, а.

Обозначим через mU - масштаб по оси U, через m1 - масштаб по оси I. Тогда для произвольной точки на характеристике рис. 2.2, а abmU = IRв; bсm1 = I; tga = ab/bc = Rвm1/mU. Следовательно, tga пропорционален Rв. Рассмотрим два крайних случая.

1. Если у некоторого источника внутреннее сопротивление Rв = 0, то ВАХ его будет прямой линией (рис. 2.2, б). Такой характеристикой обладает идеализированный источник питания, называемый источником ЭДС. Следовательно, источник ЭДС представляет собой такой идеализированный источник питания, напряжение на зажимах которого постоянно (не зависит от тока I) и равно ЭДС Е, а внутреннее сопротивление равно нулю.

2. Если у некоторого источника беспредельно увеличивать ЭДС Е и внутреннее сопротивление Rв, то точка с (рис. 2.2, а) отодвигается по оси абсцисс в бесконечность, а угол α стремится к 90° (рис. 2.2, в). Такой источник питания называют источником тока.

Следовательно, источник тока представляет собой идеализированный источник питания, который создает ток J = I, не зависящий от сопротивления нагрузки, к которой он присоединен, а его ЭДС Eит и внутреннее сопротивление Rит равны бесконечности. Отношение двух бесконечно больших величин Eит/Rит равно конечной величине - току J источника тока.

При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением Rв заменяют расчетным эквивалентом. В качестве эквивалента может быть взят:

а) источник ЭДС Е с последовательно включенным сопротивлением Rв, равным внутреннему сопротивлению реального источника (рис. 2.3, а; стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС);
б) источник тока с током J = E/Rв параллельно с ним включенным сопротивлением Rв (рис. 2.3, б; стрелка в кружке указывает положительное направление тока источника тока).

Ток в нагрузке (в сопротивлении R) для схем рис. 2.3, а, б одинаков: I = E/(R + Rв), т.е. равен току в схеме рис. 2.1, а. Для схемы, рис. 2.3, а это следует из того, что при последовательном соединении значения сопротивлений R и Rв складываются. В схеме рис. 2.3, б ток J = E/Rв распределяется обратно пропорционально значениям сопротивлений R и Rв двух параллельных ветвей. Ток в нагрузке R

Каким из двух расчетных эквивалентов пользоваться, совершенно безразлично. В дальнейшем используется в основном первый эквивалент.

Обратим внимание на следующее:

1) источник ЭДС и источниктока - идеализированные источники, физически осуществить которые, строго говоря, невозможно;
2) схема рис. 2.3, б эквивалента схеме рис. 2.3, а в отношении энергии, выделяющейся в сопротивлении нагрузки R, и не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания Rв;
3) идеальный источник ЭДС без последовательно соединенного с ним Rв нельзя заменить идеальным источником тока.

На примере схемы рис. 2.3 осуществим эквивалентный переход от схемы с источником тока к схеме с источником ЭДС. В схеме рис. 2.3, б источник тока дает ток J = 50 А. Шунтирующее его сопротивление Rв = 2 Ом. Найти ЭДС эквивалентного источника ЭДС в схеме рис. 2.3, а.

ЭДС Е = JRв = 100 В. Следовательно, параметры эквивалентной схемы рис. 2.3, а таковы; Е = 100 В, Rв = 2 Ом.

Электри́ческий импеда́нс (комплексное сопротивление, полное сопротивление) — комплексное сопротивление двухполюсника для гармонического сигнала. Это понятие ввёл физик и математик О. Хевисайд в 1886 году.

Определение

Импедансом называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник. При этом импеданс не должен зависеть от времени: если время t в выражении для импеданса не сокращается, значит для данного двухполюсника понятие импеданса неприменимо.

 

(1)

Здесь

  • j — мнимая единица;
  • ω — циклическая частота;
  • U (ω), I (ω) — амплитуды напряжения и тока гармонического сигнала на частоте ω;
  • φ u (ω), φ i (ω) — фазы напряжения и тока гармонического сигнала на частоте ω;
  • , — Комплексные амплитуды напряжения и тока гармонического сигнала на частоте ω;

Исторически сложилось, что обозначение импеданса, комплексных амплитуд и других комплекснозначных функций частоты записывают как f (j ω), а не f (ω). Такое обозначение показывает, что мы имеем дело с комплексными представлениями гармонических функций вида ej ω t . Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку: чтобы отличать от соответствующих действительных (некомплексных) величин.


Дата добавления: 2016-01-05; просмотров: 23; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!