Интегрирование выражений, содержащих квадратный трехчлен.



 

К этому типу интегралов относятся интегралы вида:

                ;

;                      

Мы увидим в дальнейшем, что без умения находить такие интегралы, мы не сможем вычислять интегралы от рациональных дробей.

Сначала научимся находить более простые интегралы видов  и .

Трудность заключается в наличии слагаемого bx. Если бы его не было, то, вынося за знак интеграла , получили бы интеграл вида (11) или (12). Решить проблему можно выделением полного квадрата.

     Пример 16 .

Решение.

 

Пример 17 .

Решение.

.

Пример 18 .

Решение.

 

Пример 19 .

Решение.

где - интеграл, рассмотренный в примере 17.

Интегрирование рациональных дробей

 

Методика интегрирования правильных дробей основана на представлении знаменателя в виде произведения линейных выражений (возможно в целых положительных степенях) и квадратичных сомножителей с отрицательными дискриминантами (возможно в целых степенях). Известен алгебраический результат, что такое представление всегда возможно.

.

Вообще говоря, получение такого представления для многочленов высоких степеней является сложной задачей. Мы в дальнейшем будем считать, что знаменатель уже представлен в таком виде. Известен алгебраический результат, что любая правильная дробь может быть представлена в виде суммы простейших дробей, интегралы от которых легко находятся. При этом каждому линейному сомножителю вида  в знаменателе соответствует группа простейших дробей вида:

.

В частности при  имеем только одно слагаемое: .

Каждому квадратичному сомножителю  соответствует группа дробей вида:

,

а при  - одно слагаемое .

Рассмотрим примеры разложения правильной дроби на простейшие:

Пример 20 .

Пример 21 .

Пример 22

.

Пример 23 .

Пример 24 .

Теоретически гарантируется, что все выписанные разложения справедливы. Остается научиться находить постоянные А, В, С … . Предположим, что указанные константы найдены. Тогда интегрирование правильной дроби сведется к нахождению интегралов вида:

  I ,                 III ,

II , , IV .

Интегралы I и II видов табличные, интегралы III вида рассмотрены в предыдущей теме, интегралы IV вида вычисляются по той же схеме, что и III вида, но в отличие от них после выделения полного квадрата возникают интегралы вида:

,

которые находятся по рекуррентной формуле:

.

Перейдем к рассмотрению конкретных примеров вычисления интегралов от правильных рациональных дробей. Сначала рассмотрим наиболее простой случай, когда знаменатель содержит только некратные линейные множители.

Пример 25 .

Решение.

.

После приведения к общему знаменателю получим следующее тождество для числителей:

.

Этим тождеством мы и воспользуемся для нахождения коэффициентов А, В и С.

Если в данном тождестве в качестве  взять конкретное значение, то получим линейное уравнение относительно А, В и С. Таких уравнений нам нужно три. Полученную систему можно решить, например, методом Гаусса. Однако можно гораздо легче найти коэффициенты, если в качестве брать не произвольные числа, а корни линейных сомножителей в знаменателе. При этом в правой части тождества будет присутствовать только один из неизвестных коэффициентов.

В результате получим:

.

Если знаменатель содержит квадратичные сомножители, то всегда нужно проверять, не будет ли D неотрицательным. Если да, то лучше разбить его на линейные сомножители.

Пример 26 .

Решение.

.

Завершите самостоятельно вычисление данного интеграла.

Перейдем к рассмотрению чуть более сложного случая, когда знаменатель содержит только линейные сомножители, причем некоторые из них кратные.

Пример 27 .

Решение.

     .

Положив последовательно  и , легко найдем два неизвестных коэффициента:

Остальные два найдем, приравняв коэффициенты при одинаковых степенях левой и правой частей тождества:

Тогда

.

Рассмотрим теперь случай, когда знаменатель содержит некратные квадратичные сомножители с отрицательным дискриминантом.

Пример 28 .

Решение.

.

.

Положим :

                  

Остальные неизвестные найдем, приравнивая коэффициенты при одинаковых степенях:

Тогда

 

Вопросы для самопроверки

 

1. Что называется первообразной?

2. Сформулируйте основные свойства неопределенного интеграла.

3. В чем заключается метод замены переменной?

4. Какие функции целесообразно интегрировать по частям? Почему?

5. Как разложить рациональную дробь на простейшие?

 

Определенный интеграл

Пусть функция  определена на отрезке . Разобьём этот отрезок на части точками  Получим  частичных отрезков длиной =  каждый.

В каждом частичном отрезке выберем произвольную точку   и вычислим в ней значение функции .

Составим сумму произведений:

.

Эта сумма называется интегральной суммой функции  на отрезке . Перейдем к пределу в последнем выражении, когда максимальный из отрезков .

Если при этом сумма  имеет предел , не зависящей от способа разбиения отрезка  на части и от выбора точек  в них, то число  называют определенным интегралом от функции  на отрезке :

В таких случаях функцию  называют интегрируемой на отрезке  и для нее справедлива теорема, утверждающая, что любая непрерывная на отрезке  функция, является интегрируемой.

 


Дата добавления: 2022-12-03; просмотров: 252; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!