Т-лимфоциты нападают на раковую клетку



Промежуточные филаменты -маркеры тканей

Промежуточные филаменты (ПФ) строятся из фибриллярных мономеров. Поэтому основная конструкция промежуточных филаментов напоминает канат, имеющий толщину около 8—10 нм. Они локализуются главным образом в околоядерной зоне и в пучках фибрилл, отходящих к периферии клеток и располагающихся под плазматической мембраной (рис. 238, 240 и 241). Встречаются промежуточные филаменты во всех типах клеток животных, но особенно они обильны в тех клетках, которые подвержены механическим воздействиям: клетки эпидермиса, нервные отростки, гладкие и исчерченные мышечные клетки. В клетках растений ПФ не обнаружены.

В состав промежуточных филаментов входит большая группа изобелков (родственных белков), которую можно разделить на четыре типа.

Первый тип составляют кератины, кислые и нейтральные, встречающиеся в эпителиальных клетках; они образуют гетерополимеры из этих двух подтипов. Кератины, кроме того, имеют, некоторую гетерогенность, зависящую от тканевого источника. Так, в эпителиях встречается до 20 форм кератинов, 10 форм других кератинов найдено в волосах и ногтях. Молекулярная масса кератинов колеблется от 40 до 70 тыс.

Второй тип белков ПФ включает в себя три вида белков, имеющих сходную молекулярную массу (45—53 тыс.). Это — виментин, характерный для клеток мезенхимного происхождения, входящий в состав цитоскелета клеток соединительной ткани, эндотелия, клеток крови. Десмин характерен для мышечных клеток, как гладких, так и исчерченных. Глиальный фибриллярный белок входит в состав ПФ некоторых клеток нервной глии — в астроциты и некоторые шванновские клетки. Периферинвходит в состав периферических и центральных нейронов.

Третий тип — белки нейрофиламентов (молекулярная масса от 60 до 130 тыс.), встречается в аксонах нервных клеток.

Четвертый тип — белки ядерной ламины. Хотя эти последние имеют ядерную локализацию, они сходны по строению и свойствам со всеми белками промежуточных филаментов.

Все белки промежуточных филаментов обладают сходной аминокислотной последовательностью из 130 остатков в центральной части фибриллярной молекулы, которая обладает α-спиральным строением. Концевые же участки молекул имеют разные последовательности аминокислот, разную длину и не имеют α-спирального строения. Наличие протяженных α-спиральных участков позволяет двум молекулам образовывать двойную спираль, подобно тому как это происходит в молекуле миозина, что приводит к образованию палочковидного димера длиной около 48 нм. Два димера, объединяясь бок о бок, образуют короткий протофиламент — тетрамер, толщиной около 3 нм. Такие протофиламенты могут объединяться в более толстые и длинные фибриллы, и в конечном итоге образуется промежуточный полный филамент, состоящий из восьми продольных протофиламентов.

Топографически в клетке расположение промежуточных филаментов повторяет расположение микротрубочек, они как бы идут бок о бок. При разрушении микротрубочек колхицином происходит так называемый коллапс промежуточных филаментов: они собираются в плотные пучки или кольца вокруг ядра. Восстановление новой сети промежуточных филаментов начинается от зоны клеточного центра. Это наводит на мысль, что центром их полимеризации или нуклеации могут быть центры, общие с микротрубочками.

ЭНЕРГЕТИЧЕСКИЙ АППАРАТ КЛЕТКИ: МИТОХОНДРИИ

Митохондрии представляют собой мембратые полуавтономные органеллы, обеспечивающие клетку энергией, получаемой благодаря процессам окисления и запасаемой в виде фосфатных связей АТФ. Митохондрии также участвуют в биосинтезе стероидов, окислении жирных кислот и синтезе нуклеиновых кислот.

Митохондрии могут иметь эллиптическую, сферическую, палочковидную, нитевидную и др. формы, которые могут изменяться в течение определенного времени. Их размеры составляют 0.2-2 мкм в ширину и 2-10 мкм в длину, а количество в различных клетках варьирует в широких пределах, достигая в наиболее активных 500-1000. В клетках печени (гепатоцитах) их число составляет около 800, а занимаемый объем равен примерно 20% объема цитоплазмы. На светооптическом уровне митохондрии выявляются в цитоплазме специальными методами и имеют вид мелких зерен и нитей (что обусловило их назваше – греч. mitos – нить и chondros – зерно).

В цитоплазме митохондрии могуг располагаться диффузно, однако обычно они сосредоточены в участках максимального потребления энергии, например, вблизи ионных насосов, сократимых элементов (миофибрилл), органелл движения (аксонем спермия, ресничек), компонентов синтетического аппарата (цистерн ЭПС).

Митохондрии состоят из наружной и внутрнней мембран, разделенных межмембранным пространством, и содержат митохондриальный матрикс, в который обращены складки внутренней мембраны – кристы

(1) наружная митохондриальная мембрана напоминает плазмолемму и обладает высокой проницаемостью для молекул массой до 10 килодальтон, проникающих из цитозоля в мемжмембранное пространство. Она содержит много молекул специализированных транспортных белков (например, порин), которые формируют широкие гадрофилыше каналы и обеспечивают ее высокую проницаемостъ, а также небольшое количестао ферментных систем. На ней находятся рецепторы, распознающие белки, которые переносятся через обе митохондриальные мембраны в особых точках их контакта – зонах слипания.

(2) внутренняя митохондриалышя мембрана отделена от наружной межмембранным пространством шириной 10-20 нм, которое содержит небольшое количество ферментов. В ее состав входят белки трех типов: (а) транспортные белки, (б) ферменты дыхательной цепи и сукцинатдегидрогенаназа (СДГ), в) комплекс АТФ-синтетазы. Низкая проницаемость внутрешей мембраны для мелких ионов из-за высокого содержания фосфолипида кардиолипина имеет большое значеше для функции митохондрий, так как она обеспечивает возможность создания электрохимических градиентов при продукции высокоэнергетических метаболитов клетки.

Кристы - складки внутренней мембраны толщиной 20 нм; располагаются чаще всего перпендикулярно длиннику митохондрии, но могут и продольно. Их число и ялощадь пропорциональны активности митохондрии. На кристах находятся элементарные (грибовидные) частицы, называемые также оксисомами или F1-частицами, в количестве 104-105, состоящие из головки диаметром 9 нм и ножки толщиной 3 нм (см. рис 3-12). На нх происходит сопряжение процессов окисления и фосфорилирования. В области округлой головки частицы осуществляется синтез АТФ из АДФ. Разобщение метаболических процессов окисления и фосфорилирования приводит к образованию значительного количества тепла вместо накопления энергии в форме макроэргаческих соединений. Такое разобщение характерно, например, для митохондрий клеток бурой жировой ткани, специализированной на продукии тепла (термогенезе). Оно обусловлено присутствием в них особого белка UCP (сокр. от англ. Uncoupling protein – разобщающий белок), или могенина, варианты которого в последние годы обнаружены в митохондриях клеток различных тканей. Высказано предположение, что склоность к развитию некоторых метаболических заболеваний, например ожирения, может определяться нарушениями выработки или функции этих белков.

Форма крист - в митохондриях большинства клеток - пластинчатая (ламеллярная); в некоторых клетках встречаются кристы в виде трубочек и пузырьков – тубулярно-везикулярные кристы (рис. 3-13) Последний вариант характерен для клеток, синтезирующих стероидные гормоны (клетки коркового вещества надпочечников, фолликулярные и клетки желтого тела яичника, клетки Лейдига яичка). В таких клетках ферменты стероидогенеза локализуются частично в аЭПС, а частнчно – на внутренней митохондриальной мембране. В ходе синтеза стероидов промежуточные продукты неоднократно перемещаются ежду этими органеллами.

(3) митохондриальный матрикс – гомогенное мелкозернистое вещество умеренной плотности, заполняющее полость (внутреннюю камеру) митохондрии и содержащее несколько сотен ферментов: растворимые ферменты цикла Кребса (за исключением СДГ), ферменты, участвуюпше в окислении жирных кислот, ферменты белкового синтеза. В матриксе находятся также митохондриалъные рибосомы, митохондриалъные гранулы и митохондриалъная ДНК (что отличает митохондрии от всех остальных органелл).

Митохондриальные рибосомы имеют вид мелких плотных гранул, распределенных в матриксе. Белки, образующие эти рибосомы, лишь частично продуцируются в самой митохоадрии.

Митохондриальные гранулы - частицы высокой электронной плотности диаметром 20-50 нм с мелкозернистой или пластинчатой структурой, разбросанные по митохондриальному матриксу, содержащие ионы Са2+ и Мg2+, а также другие дивалентные катионы. Функция гранул выяснена неполностью; предполагается, что их катионы необходимы для поддержания активности митохондриальных ферментов.

Митохондриальная ДНК (мтхДНК) – образует собственный геном митохондрий, на который приходится около 1% общего содержания ДНК в клетке и который включает 37 генов (в ядре клеток человека насчитывают примерно 100 тыс. генов). МтхДНК - кольцевой формы Двунитчатая молекула ДНК длиной 5.5 мкм и толщиной 2 нм (в каждой митохондрии имеется 2-10 таких молекул). Она сходна с бактериалъной и отличается от ядерной ДНК генетическим кодом, низким содержанием некодирующих последовательностей и отсутствием связи с гистонами.

Генетическая информация мтхДНК обеспечивает синтез лшпь 5-6% митохондриальных белков, в частности, большей части ферментов электронтранспортаой системы и некоторых ферментов синтеза АТФ. Синтез других белков и репликация митохондрий контролируются ядерной ДНК. МтхДНК кодирует иРНК, тРНК и рРНК, формируя, таким образом, частачно независимую от ядра систему репликации, транскрипции трансляциии. Вместе с тем, синтез мтхДНК и РНК зависит от -нтов, которые являготся продуктами ядерных генов. Большая часть рибосомальных белков митохондрий синтезируется в цитоплазме, Затем транспортируется в митоховдрии. Область митохондрии, содержащая мтхДНК, иногда выявляется в матриксе как тонкофибриллярная зона низкой плотности (нуклеоид).

Наследование мтхДНК у многах видов, включая человека, происходит только от матери (мтхДНК отца исчезает при образовании эмбриона).

Повреждение мтхДНК и митохондриальные болезни. МтхДНК часто испытывает повреждения, что объясняется ее расположением непосредственно в митохондриальном матриксе, где она постоянно подвергается окислительному стрессу высокой интенсивности из-за образования в нем значителыюго количества биоокислителей (перекиси водорода и реактивных радикалов кислорода). Вследствие этого частота мутаций мтхДНК в 10 раз выше, чем ядерной, что усугубляется отсутствием защитных белков, контроля репликации и неэффективной репарацией. Мутации мтхДНК вызывают ряд заболеваний (так называемых "митохондриалъных болезней") с широким спектром клинических проявлений (слепота, глухота, нарушения движения, сердечная недостаточ-ность, диабет, патология печени и почек и др.). Симптомы большинства митохондриальных болезней проявляются с возрастом, что, вероятно, обусловлено накоплением мутаций, связанных с "окислителными ударами" по мтхДНК. Так как биоокислители генерируются в максимальных количествах при окислительном фосфорилировании, чаще поражаются органы, наиболее нуждающиеся в энергии, продуцируемой митохондриями (ЦНС, сердце, скелетные мыпщы, почки, печень, островки Лангерганса). Диагаоз некоторых митохондриальных болезней может бьпъ поставлен при изучении биоптата мышечной ткани, в котором выявляются аномальные митохондрии.

Жизненный цикл митохондрий сравнительно короткий (около 10 сут); их разрушешение происходит путем аутофагии, а гибнущие органеллы замещаются новыми, которые формируются путем перешнуровки предсуществующих. Репликация мтхДНК происходит в любые фазы клеточного цикла независимо от репликации ядерной ДНК.

3)ХАРАКТЕРИСТИКА МОРУЛЫ

Морула - это понятие эмбриологии, описывает структуру, которая образовалась в процессе дробления зиготы, а сопутствующая стадия эмбриогенеза называется соответственно стадией морулы.

Этой стадии предшествует стадия клеточного деления зиготы, а завершается морула стадией бластоцисты. С латинского, морула переводится как тутовая ягода (morus). Это достаточно плотная масса, которая насчитывает от 12 до 32 новобразовавшихся бластомеров. Эти бластомеры создают клеточный компактный шар. Он образовывается в результате видоизменения и скрепления множества бластомер.

Процесс образования подобного шара запускается гликопротеинами (компонентами клеточных мембран). Основной целью бластомерного шара является уплотнения зиготы. На 3-4 день после оплодотворения стадия морулы завершается. Начинается процесс перемещения раннего эмбриона в матку. Оплодотворённая яйцеклетка продолжает удваивать количество клеток.

Дробление зиготы обеспечивают «светлые» и «темные» бластомеры.

«Светлые» дают начало развитию трофобласта (специального наружного слоя клеток). Основной задачей трофобласта является обеспечение связи эмбриона и материнского организма. После образования трофобласта наиболее приемлема имплантация плодного яйца. Трофобластовые ворсинки способствуют внедрению в матку имплантированных элементов.

Из «темных» бластомер впоследствии развивается эмбриопласт. Эмбриопласт очень важная стадия развития, она обеспечивает образование органов эмбриона и внезародышевых органов, например желточного мешочка.

ПЕРЕХОДНЫЙ ЭПИТЕЛИЙ

Переходный эпителий ВЫСТИЛАЕТ мочеотводящие органы – лоханки почек, мочеточники, мочевой пузырь.Слои клеток:
1. Базальный – мелкие округлые камбиальные клетки
2. Переходный
3. Поверхностный – крупные, 2-3 ядерные, куполообразной или уплощенной формы в зависимости от заполнения органа. Пластинки плазмолеммы «булыжная мосовая», встраивание дисковидных пузырьков.
Регенерация: источник – стволовые клетки в базальном слое в многорядных эпителиях- базальные клетки, в однослойных - тонкая кишка – крипт, желудок – ямки.
Эпителий хорошо иннервирован и имеет рецепторы.

ЦИТОФИЗИОЛОГИЯ ЛИМФОЦИТОВ

Функции Т-лимфоцитов:

Среди лимфоцитов выделяют три субпопуляции: T-, B- и NK-клетки.

Т-лимфоциты делятся еще на три вида, но самые главные из них называются Т-киллерами. Вряд ли это определение нуждается в расшифровке: и так понятно, что делают лимфоциты данного вида. Вступая в контакт с «неправильными» клетками, они их уничтожают.

А какие же клетки относятся к «неправильным»? Все, которые не являются нормальными. Клетки с генетическими поломками, пораженные бактериями, вирусами и прочими внутриклеточными паразитами вызывают настороженность, а затем и агрессию со стороны иммунитета. Зафиксировав произошедший в них сбой, иммунная система направляет против них Т-лимфоциты.

Интересно, что Т-лимфоциты помнят обо всех агрессорах, с которыми столкнулся человек на протяжении жизни. В нашей крови циркулируют сотни, тысячи разных клонов Т-лимфоцитов, и каждый такой клон «имеет зуб» на определенного агрессора. Стоит в организм попасть знакомому врагу, как клетки соответствующего клона быстро размножаются и атакуют его…

Т-лимфоциты нападают на раковую клетку

В разделе, посвященном фагоцитам и фагоцитозу, уже рассказывалось о макрофагах, нейтрофилах и других компонентах иммунитета, которые пожирают проникшие в тело частицы бактерий, токсинов и так далее. А чем же тогда от них отличаются лимфоциты? Функции Т-лимфоцитов уникальны в том, что их активность направлена именно против пораженных клеток собственного организма, а не против того, что их поразило. Все структуры тела, не подлежащие восстановлению, уничтожаются, и этим занимаются Т-лимфоциты.

 

Функции В-лимфоцитов:

Лимфоциты у детей и взрослых представлены еще одной важной разновидностью: В-клетками. Последние обеспечивают гуморальный иммунитет (определение происходит от слова humor – жидкость). Функции лимфоцитов В-типа состоят в том, что они вырабатывают антитела – особые вещества, которые оказывают агрессивное воздействие на инородные частицы. Эти вещества растворимы и выделяются лимфоцитами в плазму крови (вот вам и ответ на вопрос: «А при чем тут жидкость?»).

После того, как В-клетки выработали антитела против какого-то объекта, часть из этих лимфоцитов преобразуется в клетки памяти. Они формируют самую настоящую «библиотеку опасностей», хранят информацию о том, с чем столкнулись, и при повторной встрече с агрессором мобилизуют иммунитет на уничтожение «врага».

 

Функции NK-клеток:

Третья разновидность лимфоцитов (натуральные киллеры, NK-клетки) существует затем, чтобы помогать первой. В принципе, по своим функциям они дублируют Т-лимфоциты. Натуральные киллеры обладают способностью уничтожать те поврежденные клетки, которые недоступны действию Т-лимфоцитов.

Лимфоциты у детей в достаточной степени «неопытны»: у детского иммунитета память развита не очень хорошо, ведь он еще не успел встретиться с большим числом болезней. Именно поэтому малыши менее устойчивы к разного рода напастям, чем взрослые. Впрочем, даже взрослый и зрелый возраст не обеспечивает нам неуязвимости к бактериям, вирусам и т.д.

Есть средство, которое позволяет «освежить» и укрепить память иммунной системы. Это препарат Трансфер Фактор. Он имеет биологическое происхождение и содержит информационные молекулы, несущие в себе сведения о том, как иммунной системе нужно правильно работать и как ей реагировать на те или иные раздражители. Особенно значительное влияние препарата отмечается в отношении NK-клеток, активность которых под действием терапии Трансфер Фактором повышается на 283%.

Препарат подходит для пациентов разных возрастов, может применяться в лечебных и профилактических целях. Это одно из самых сильных средств, позволяющих улучшить функции лимфоцитов, поэтому он показан всем людям, которые имеют проблемы с иммунитетом или хотят их избежать.

 

Реакция трансплантационного иммунитета развивается по следующей схеме:

— распознаются чужеродные антигены трансплантата,

— созревают и накапливаются эффекторы трансплантационной реакции отторжения в периферической, ближайшей к трансплантату лимфоидной ткани

— разрушается трансплантат.

Во время формирования реакции на трансплантат наступает активация макрофагов, в результате воздействия цитокинов Т — клеток или в результате пассивной сорбции иммуноглобулинов на поверхности макрофагов по аналогии с НК-клетками.

Клиническими проявлениями реакции отторжения трансплантата является чувство усталости, лихорадка, гипотензия, повышенное центральное венозное давление, шум трения перикарда, лейкоцитоз, над желудочковые аритмии, наличие ритма галопа.

За факторы, ограничивающие трансплантацию тканей, принято считать иммунологические реакции против пересаженных клеток и присутствие соответствующих донорских органов.

 

6)Воспаление. Этапы


Дата добавления: 2022-12-03; просмотров: 15; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!