Ротаметр специальный прямоточный ВИР



       Принцип действия расходомера ВИР основан на ротаметрическом способе измерения, то есть мерой расхода в нём является вертикальное перемещение поплавка под воздействием обтекающего его потока жидкости. Перемещение поплавка преобразуется в электрический сигнал.

 

                  Т1             Т2

                                                                              КСД

                             
 
     
   

 

 


                                  ~

         ВИР                                         РД                       

                               кулачок

                                     

Рис. 8

 

Принципиальная электрическая схема ВИР со схемой подключения к преобразователю (КСД) представлена на рис. 8.

         ВИР представляет из себя ротаметрическую пару (мерительный конус, поплавок-сердечник), реагирующую на изменение потока измеряемой жидкости, посредством дифференциального трансформатора Т1, преобразующего перемещение поплавка-сердечника в напряжение переменного тока. Преобразователь (КСД) предназначен для питания первичной обмотки трансформатора Т1 датчика и преобразования напряжения переменного тока, индуктирующегося во вторичной обмотке дифференциального трансформатора Т1 датчика, в показания на шкале прибора, соответствующее протекаемому расходу жидкости.

Изменение напряжения на вторичной обмотке дифференциального трансформатора Т2, вызванное перемещением сердечника-поплавка в датчике, усиливается и передаётся на реверсивный двигатель.

Подвижный сердечник дифференциального трансформатора Т2 является элементом отрицательной обратной связи, компенсирующей изменение напряжения на входе трансформатора Т2. Перемещение сердечника осуществляется через кулачок при вращении реверсивного двигателя РД. Одновременно вращение реверсивного двигателя передаётся на стрелку прибора.

Датчик ротаметра (рис. 9) состоит из корпуса 1, ротаметрической трубки 2, катушки дифференциального трансформатора 3, поплавка-сердечника 4 и клеммной коробки 5.

Корпус представляет собой цилиндр с крышками 9, внутри которого проходит ротаметрическая труба, а к его боковой поверхности приварена клеммная коробка с крышкой 6, которая крепится шестью болтами. В корпусе находится катушка дифференциального трансформатора, залитая компаундом 10 (ВИКСИНТ К-18).

Ротаметрическая труба представляет собой трубу из нержавеющей стали, на концах которой приварены фланцы 7, служащие для крепления датчика на технологическую линию. Внутри ротаметрической трубы находится фторопластовая труба 8 с внутренним мерительным конусом.

Рис. 9

 

Катушка дифференциального трансформатора намотана непосредственно на ротаметрическую трубу, концы обмоток катушки присоединены к проходным зажимам клеммной коробки.

       Поплавок-сердечник состоит из поплавка специальной конструкции, выполненного из фторопласта-4 и сердечника из электротехнической стали, расположенного внутри поплавка.

Катушка дифференциального трансформатора с поплавком сердечником составляет дифференциальный трансформатор датчика, первичная обмотка которого питается от преобразователя, а напряжение, индуктируемое во вторичной обмотке, поступает на преобразователь.

 

 Электромагнитные расходомеры

В основе электромагнитных расходомеров лежит взаимодействие движущейся электропроводной жидкости с магнитным полем, подчиняющееся закону электромагнитной индукции.

Основное применение получили такие электромагнитные расходомеры, у которых измеряется ЭДС, индуктируемая в жидкости, при пересечении ею магнитного поля. Для этого (рис. 10) в участок 2 трубопровода, изготовленного из немагнитного материала, покрытого изнутри неэлектропроводной изоляцией и помещённого между полюсами 1 и 4 магнита или электромагнита, вводятся два электрода 3 и 5 в направлении, перпендикулярном как к направлению движения жидкости, так и к направлению силовых линий магнитного поля. Разность потенциалов Е на электродах 3 и 5 определяется уравнением:

,

где – В – магнитная индукция; D – расстояние между концами электродов, равное внутреннему диаметру трубопровода; v и Q0 средняя скорость и объёмный расход жидкости.

 


                                     4

                                                                S

                               3                                             5                                       

 

                            2                                            1 

                                                                N

 

 

Рис . 10

 

Таким образом, измеряемая разность потенциалов Е прямо пропорциональна объёмному расходу Q0. Для учёта краевых эффектов, вызываемых неоднородностью магнитного поля и шунтирующим действием трубы, уравнение умножается на поправочные коэффициенты kм и kи, обычно весьма близкие к единице.

Достоинства электромагнитных расходомеров: независимость показаний от вязкости и плотности измеряемого вещества, возможность применения в трубах любого диаметра, отсутствие потери давления, линейность шкалы, необходимость в меньших длинах прямых участков труб, высокое быстродействие, возможность измерения агрессивных, абразивных и вязких жидкостей. Но электромагнитные расходомеры неприменимы для измерения расхода газа и пара, а также жидкостей диэлектриков, таких, как спирты и нефтепродукты. Они пригодны для измерения расхода жидкости, у которых удельная электрическая проводимость не менее 10-3 См/м.

 

Счётчики

       По принципу действия все счетчики жидкостей и газов делятся на скоростные и объемные.

Скоростные счетчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а, следовательно, и расходу.

       Объемные счетчики. Поступающая в прибор жидкость (или газ) измеряется отдельными, равными по объему дозами, которые затем суммируются.

 


Дата добавления: 2022-11-11; просмотров: 33; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!