Классификация   нагрузок   и   элементов   конструкции

Лекция 18

 

РАЗДЕЛ II

Сопротивление         материалов

ЛЕКЦИЯ 18

Тема 2.1.   Основные  положения.

Гипотезы  и   допущения

Иметь представление о видах расчетов в сопротивлении ма­териалов, о классификации нагрузок, о внутренних силовых фак­торах и возникающих деформациях, о механических напряжениях.

Знать основные понятия, гипотезы и допущения в сопроти­влении материалов.

«Сопротивление материалов» — это раздел «Технической ме­ханики», в котором излагаются теоретико-экспериментальные осно­вы и методы расчета наиболее распространенных элементов кон­струкций на прочность, жесткость и устойчивость.

В сопротивлении материалов пользуются данными смежных дисциплин: физики, теоретической механики, материаловедения, ма­тематики и др. В свою очередь сопротивление материалов как наука является опорной базой для целого ряда технических дисциплин.

Любые создаваемые конструкции должны быть не только проч­ными и надежными, но и недорогими, простыми в изготовлении и об­служивании, с минимальным расходом материалов, труда и энергии.

Расчеты сопротивления материалов являются базовыми для обеспечения основных требований к деталям и конструкциям.

Основные   требования   к   деталям   и   конструкциям и   виды     

Расчетов в сопротивлении материалов

Механические свойства материалов

Прочность — способность не разрушаться под нагрузкой. Жесткость — особность незначительно деформироваться под нагрузкой.


                                             Тема 2.1. Основные положения                                  163

Выносливость — способность длительное время выдерживать переменные нагрузки.

Устойчивость — способность сохранять первоначальную фор­му упругого равновесия.

Вязкость — способность воспринимать ударные нагрузки.

Виды расчетов

Расчет на прочность обеспечивает неразрушение конструкции.

Расчет на жесткость обеспечивает деформации конструкции под нагрузкой в пределах допустимых норм.

Расчет на выносливость обеспечивает необходимую долговеч­ность элементов конструкции.

Расчет на устойчивость обеспечивает сохранение необходимой формы равновесия и предотвращает внезапное искривление длинных стержней.

Для обеспечения прочности конструкций, работающих при ударных нагрузках (при ковке, штамповке и подобных случаях), про­водятся расчеты на удар.

Основные  гипотезы  и   допущения

Приступая к расчетам конструкции, следует решить, что в дан­ном случае существенно, а что можно отбросить, т. к. решение тех­нической задачи с полным учетом всех свойств реального объекта невозможно.

Допущения о свойствах материалов

Материалы однородные — в любой точке материалы имеют оди­наковые физико-механические свойства.

Материалы представляют сплошную среду — кристаллическое строение и микроскопические дефекты не учитываются.

Материалы изотропны — механические свойства не зависят от направления нагружения.

Материалы обладают идеальной упругостью — полностью вос­станавливают форму и размеры после снятия нагрузки.

В реальных материалах эти допущения выполняются лишь от­части, но принятие таких допущений упрощает расчет. Все упроще­ния принято компенсировать, введя запас прочности.


164                                                                       Лекция 18

Допущения о характере деформации

Все материалы под нагрузкой деформируются, т. е. меняют форму и размеры.

Характер деформации легко проследить при испытании мате­риалов на растяжение.

Перед испытаниями цилиндрический образец закрепляется в за­хватах разрывной машины, растягивается и доводится до разруше­ния. При этом записывается зависимость между приложенным уси­лием и деформацией. Получают график, называемый диаграммой растяжения. Для примера на рис. 18.1 представлена диаграмма ра­стяжения малоуглеродистой стали.     

На диаграмме отмечают особые точки:

— от точки 0 до точки 1 — прямая линия (деформация пря­мо пропорциональна нагрузке);

— от точки 2 до точки 5 деформации быстро нарастают и образец разрушается, разрушению предшествует появление утончения (шейки) в точке 4.

Если прервать испытания  до точки 2, образец вернется к исходным размерам; эта область называется областью упругих де­формаций. Упругие деформации полностью исчезают после снятия нагрузки.

При продолжении испытаний после точки 2 образец уже не воз­вращается к исходным размерам, деформации начинают накапли­ваться.

При выключении машины в точке А образец несколько сжима­ется по линии АВ, параллельной линии 01. Деформации после точки 2 называются пластическими, они полностью не исчезают; сохра­нившиеся деформации называются остаточными.

На участке 01 выполняется закон Гука:

В пределах упругости деформации прямо пропорциональны на­грузке.

Считают, что все материалы подчиняются закону Гука.

Поскольку упругие деформации малы по сравнению с геометри­ческими размерами  детали ,    при  расчетах    считают ,    что  размеры  под


               Тема 2.1. Основные положения                                       165

нагрузкой не изменяются.

Расчеты ведут, используя принцип начальных размеров. При ра­боте конструкции деформации должны оставаться упругими.

К нарушению прочности следует относить и возникновение пла­стических деформаций. Хотя в практике бывают случаи, когда мест­ные пластические деформации считаются допустимыми.

Классификация   нагрузок   и   элементов   конструкции

Классификация   нагрузок

                      

                    

Статистические нагрузки (рис. 18.2а) не меняются со време­нем или меняются очень медленно. При действии статистических нагрузок проводится расчет на прочность.

Повторно-переменные нагрузки (рис. 18.26) многократно меня­ют значение или значение и знак. Действие таких нагрузок вызывает усталость металла.

Динамические нагрузки (рис. 18.2в) меняют свое значение в короткий промежуток времени, они вызывают большие ускоре­ния и силы инерции и могут привести к внезапному разрушению конструкции.

Из теоретической механики известно, что по способу приложе­ния нагрузки могут быть сосредоточенными или распределенными по поверхности.


166                                                    Лекция 18

Реально передача нагрузки между деталями происходит не в точке, а на некоторой площадке, т.е. нагрузка является распреде­ленной.

Однако если площадка контакта пренебрежительно мала по сравнению с размерами детали, силу считают сосредоточенной.

При расчетах реальных деформируемых тел в сопротивлении материалов заменять распределенную нагрузку сосредоточенной не следует.

Аксиомы теоретической механики в сопротивлении материалов используются ограниченно.

Нельзя переносить пару сил в другую точку детали, переме­щать сосредоточенную силу вдоль линии действия, нельзя систе­му сил заменять равнодействующей при определении перемещений. Все вышеперечисленное меняет распределение внутренних сил в конструкции.

Формы элементов конструкции

Все многообразие форм сводится к трем видам по одному при­знаку.

1. Брус — любое тело, у которого длина значительно больше других размеров.

В зависимости от форм продольной оси и поперечных сечений различают несколько видов брусьев:

— прямой брус постоянного поперечного сечения (рис. 18.3а);


              Тема 2.1. Основные положения                                          167

3. Массив — тело, у которого три размера одного порядка.

        


Дата добавления: 2022-06-11; просмотров: 61; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!