Средняя кинетическая энергия хаотического поступательного движения молекул газа пропорциональна абсолютной температуре.

Отделение специальности 34.02.01 «Сестринское дело»

Дисциплина: ОУД.15 «Физика»

16.02.2022 г. 192 группа        

Лекция № 9

Тема лекции: «Идеальный газ в молекулярно-кинетической теории. Основное уравнение молекулярно-кинетической теории газов. Абсолютная температура. Температура - мера средней кинетической энергии».

План лекции:

1. Идеальный газ в молекулярно-кинетической теории.

2. Основное уравнение МКТ.

3. Абсолютная температура.

4. Температура - мера средней кинетической энергии.

Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами - массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа.

Давление газа на стенку сосуда обусловлено ударами молекул, давление газа пропорционально концентрации молекул: чем больше молекул в единице объема, тем больше ударов молекул о стенку за единицу времени. Каждая молекула при ударе о стенку передает ей импульс, пропорциональный импульсу молекулы m0v.

Давление пропорционально второй степени скорости, так как, чем больше скорость молекулы, тем чаще она бьется о стенку сосуда. Расчеты показывают, что основное уравнение молекулярно-кинетической теории идеального газа имеет вид:

, где m0 - масса одной молекулы газа,

n- концентрация молекул,

- среднее значение квадрата скорости молекул.

Коэффициент обусловлен трёхмерностью пространства - во время хаотического движения молекул все три направления равноправны. Средняя кинетическая энергия поступательного движения

тогда уравнение примет вид:

Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

Измеряя расположение звёзд на небе, расстояния на земле, время, люди знали, для чего они это делают и изобретали, телескопы, часы, прототипы современных линеек. О температуре такого же сказать было нельзя. О том, что такое тепловое равновесие и что означает степень нагрева тела (температура), существовали разные мнения. Но человек с незапамятных времен точно знал, что, когда два тела плотно соприкасаются, между ними устанавливается, выражаясь современным языком, тепловое равновесие.

Любое макроскопическое тело или группа макроскопических тел при неизменных внешних условиях самопроизвольно переходят в состояние теплового равновесия.

Тепловым равновесием называют такое состояние тел, при котором температура во всех точках системы одинакова.

Температура (от лат. temperatura — надлежащее смешение, соразмерность, нормальное состояние) - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

К числу характеристик состояния макроскопических тел (твёрдых тел, жидкостей, газов) и процессов изменения их состояний, относят объём, давление и температуру. Эти величины описывают в целом тела, состоящие из большого числа молекул, а не отдельные молекулы. При этом микроскопические процессы внутри тела не прекращаются при тепловом равновесии: расположения молекул всё время меняются и меняются их скорости при столкновениях.

Величины объём, давление и температуру, характеризующие состояние макроскопических тел без учёта их молекулярного строения, называют макроскопическими параметрами.

Тепловым или термодинамическим равновесием, изолированной системы тел, называют состояние, при котором все макроскопические параметры в системе остаются неизменными.

Для точной характеристики нагретости тела, необходим прибор, способный измерить температуры тел и дать возможности их сравнения.

Термометр — это прибор для измерения температуры путём контакта с исследуемым телом. Различают жидкостные, газовые термометры, термопары, термометры сопротивления.

В 1597 году Галилей создал термоскоп, в собственных сочинениях учёного нет описания этого прибора, но его ученики засвидетельствовали этот факт. Аппарат представлял собой устройство для поднятия воды при помощи нагревания.

Изобретение термометра, данные которого не зависели бы от перепадов атмосферного давления, произошли благодаря экспериментам физика Э. Торричелли, ученика Галилея.

Во всех приборах, изобретённых в XVIII веке, измерение температуры было относительно расширению столбика воды, спирта или ртути и произвольности выбора начала отсчёта, т.е. нулевой температуры. Наполняющие их вещества замерзали или кипели и этими термометрами нельзя было измерять очень низкие или очень высокие температуры. Необходимо было изобрести такую шкалу, чтобы избавиться от зависимости выбранного вещества, на основе которого формировалось градуирование.

Шкала, предложенная шведским учёным Андерсом Цельсием в 1742 г., точно устанавливала положение двух точек: 0 и 100 градусов. По шкале Цельсия температура обозначается буквой t, измеряется в градусах Цельсия (ºС).

На территории Англии и США используется шкала Фаренгейта. Такая шкала была предложена немецким учёным Даниелем Габриелем Фаренгейтом в 1724 г.: 0 °F — температура смеси снега с нашатырём или поваренною солью, 96 °F —температура здорового человеческого тела, во рту или под мышкой.

Рене Антуан де Реомюр не одобрял применения ртути в термометрах вследствие малого коэффициента расширения ртути. В 1730 году изобрёл водно-спиртовой термометр и предложил шкалу от 0 до 80°.

Шкала Реомюра очень долго использовалась на родине учёного во Франции вплоть до настоящего времени.

Различные жидкости при нагревании расширяются не одинаково. Поэтому расстояния на шкале между нулевой отметкой 0 °C и 100 °C будут разными.

Однако существует способ создать тело, которое приближенно обладает нужными качествами. Это идеальный газ. Было замечено, что в отличие от жидкостей все разряжённые газы – водород, гелий, кислород – расширяются при нагревании одинаково и одинаково меняют своё давление при изменении температуры. Это свойство газов позволяет избавиться в термометрах от одного существенного недостатка шкалы Цельсия – произвольности выбора начала отсчёта, то есть нулевой температуры.

При тепловом равновесии, если давление и объём газа массой m постоянны, то средняя кинетическая энергия молекул газа должна иметь строго определённое значение, как и температура.

Практически такую проверку произвести непосредственно невозможно, но с помощью основного уравнения молекулярно-кинетической теории её можно выразить через макроскопические параметры:

; ; ; ;

Если кинетическая энергия действительно одинакова для всех газов в состоянии теплового равновесия, то и значение давления р должно быть тоже одинаково для всех газов при постоянном значении отношения объёма к числу молекул. Подтвердить или опровергнуть данное предположение может только опыт.

Возьмём несколько сосудов, заполненных различными газами, например, водородом, гелием и кислородом. Сосуды имеют определённые объёмы и снабжены манометрами, для измерения давления газов в сосудах. Массы газов известны, тем самым известно число молекул в каждом сосуде. Приведём газы в состояние теплового равновесия. Для этого поместим их в тающий лёд и подождём, пока не установится тепловое равновесие и давление газов перестанет меняться.

Здесь устанавливается тепловое равновесие и все газы имеют одинаковую температуру 0 °С. При этом показания манометра показывают разное давление р, объёмы сосудов V изначально были разными и число молекул N различно, так как газы, закаченные в баллоны разные. Найдём отношение для водорода всех параметров для одного моля вещества:

Такое значение отношения произведения давления газа на его объём к числу молекул получается для всех газов при температуре тающего льда. Обозначим это отношение через Θ0 (тета нулевое):

Таким образом, предположение, что средняя кинетическая энергия, а также давление р в состоянии теплового равновесия одинаковы для всех газов, если их объёмы и количества вещества одинаковы или если отношение

Если же сосуды с газами поместить в кипящую воду при нормальном атмосферном давлении, то согласно эксперименту, отношение макроскопических параметров будет также одинаковым для всех газов, но значение будет больше предыдущего

Отсюда следует, что величина Θ растёт с повышением температуры и не зависит от других параметром, кроме температуры. Этот опытный факт позволяет рассматривать величину Θ тета как естественную меру температуры и измерять в энергетических единицах — джоулях.

А теперь вместо энергетической температуры введём температуру, которая будет измеряться в градусах. Будем считать величину тета Θ прямо пропорциональной температуре Т, где k- коэффициент пропорциональности

Так как , то тогда

По этой формуле вводится температура, которая даже теоретически не может быть отрицательной, так как все величины левой части этого равенства больше или равны нулю. Следовательно, наименьшим значением этой температуры является нуль, при любом другом параметре p, V, N равным нулю.

Предельную температуру, при которой давление идеального газа обращается в нуль при фиксированном объёме или при которой объём идеального газа стремится к нулю при неизменном давлении, называют абсолютным нулём температуры.

Тепловое движение молекул непрерывно и бесконечно, а при абсолютном нуле молекулы поступательно не двигаются. Следовательно, абсолютный нуль температур при наличии молекул вещества не может быть достигнут. Абсолютный нуль температур — это самая низкая температурная граница, верхней не существует, та «наибольшая или последняя степень холода», существование которой предсказывал М.В. Ломоносов.

В 1848 г. английскому физику Вильяму Томсону (лорд Кельвин) удалось построить абсолютную температурную шкалу (её в настоящее время называют шкалой Кельвина), которая имеет две основные точки 0 К (или абсолютный нуль) и 273К, точка в которой вода существует в трёх состояниях (в твёрдом, жидком и газообразном).

Абсолютная температурная шкала — шкала температур, в которой за начало отсчёта принят абсолютный нуль. Температура здесь обозначается буквой T и измеряется в кельвинах (К).

На шкале Цельсия, есть две основные точки: 0°С (точка, в которой тает лёд) и 100°С (кипение воды). Температура, которую определяют по шкале Цельсия, обозначается t. Шкала Цельсия имеет как положительные, так и отрицательные значения.

Из опыта мы определили значения величины Θ (тета) при 0 °С и 100 °С. Обозначим абсолютную температуру при 0 °С через Т1, а при 100 °С через Т2. Тогда согласно формуле:

Отсюда можно вычислить коэффициент k, который связывает температуру в Θ энергетических единицах (Дж) с абсолютной температурой Т (К)

k = 1,38 • 10-23 Дж/К - постоянная Больцмана.

Зная постоянную Больцмана, можно найти значение абсолютного нуля по шкале Цельсия. Для этого найдём сначала значение абсолютной температуры, соответствующее 0°С:

значение абсолютной температуры.

Один кельвин и один градус шкалы Цельсия совпадают. Поэтому любое значение абсолютной температуры Т будет на 273 градуса выше соответствующей температуры t по Цельсию:

Теперь выведем ещё одну зависимость температуры от средней кинетической энергии молекул. Из основного уравнения молекулярно-кинетической теории и уравнения для определения абсолютной температуры

Здесь видно, что левые части этих уравнений равны, значит правые равны тоже.

Средняя кинетическая энергия хаотического поступательного движения молекул газа пропорциональна абсолютной температуре.

Абсолютная температура есть мера средней кинетической энергии движения молекул.

Из выведенных формул мы можем получить выражение, которое показывает зависимость давления газа от концентрации молекул и температуры

Из этой зависимости вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же. Отсюда следует закон Авогадро, известный нам из курса химии.

Закон Авогадро: в равных объёмах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Уравнение Клапейрона при m = const: отношение произведения давления и объёма к температуре есть величина постоянная для постоянной массы газа:

Если изменяется какой-либо макроскопический параметр газа постоянной массы, то два других параметра изменятся таким образом, чтобы указанное соотношение осталось постоянным.

Отношение произведения давления и объёма к температуре равно универсальной газовой постоянной для одного моля идеального газа.

Уравнение Менделеева при v = 1 моль

Произведение постоянной Больцмана и постоянной Авогадро называется универсальной газовой постоянной.

- уравнение состояния идеального газа.

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона».

Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

где pi– парциальное давление i-й компоненты смеси.

Парциальное давление – давление отдельно взятого компонента газовой смеси, равное давлению, которое он будет оказывать, если занимает весь объём при той же температуре.

Один моль любого газа при нормальных условиях занимает один и тот же объём равный:

V0=0,0224м3/моль=22,4дм3/моль.

Это утверждение называется законом Авогадро

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами (изопроцессами).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Для газа данной массы произведение давления на объём постоянна, если температура газа не меняется - закон Бойля – Мариотта.

Изотерма соответствующая более высокой температуре T1, лежит на графике выше изотермы, соответствующей более низкой температуре T2.

Если значения давления и температуры в различных точках объёма разные, то в этом случае газ находится в неравновесном состоянии.

Равновесное состояние - это состояние, при котором температура и давление во всех точках объёма одинаковы.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Для газа данной массы отношение объема к температуре постоянно, если давление не изменяется - закон Гей-Люссака.

Изобара соответствующая более высокому давлению p2 лежит на графике ниже изобары соответствующей более низкому давлению p1.

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

При данной массе газа отношение давление газа к температуре постоянно, если объем газа не изменяется - закон Шарля.

Изохора соответствующая большему объему V2 лежит ниже изохоры, соответствующей меньшему объему V1.

Идеальный газ нельзя превратить в жидкость. В жидкость можно превратить реальный газ.

Вы уже знакомы с процессами испарения, конденсации и кипения. Если число молекул, покидающих жидкость за определённый промежуток времени, больше числа молекул, возвращающихся в неё, то мы наблюдаем испарение. Чем выше температура жидкости, тем большее число молекул имеет достаточную для вылета из жидкости кинетическую энергию, тем быстрее идет испарение. Если число молекул, возвращающихся в жидкость, будет больше, покидающих её, то мы наблюдаем процесс конденсации.

Кипение – это процесс парообразования, происходящий по всему объему жидкости при температуре кипения при определенной температуре кипения и внешнем давлении.

Динамическое равновесие – состояние, при котором число молекул, покидающих поверхность жидкости за некоторый промежуток времени, будет равно в среднем числу молекул пара, возвратившихся за то же время в жидкость.

Пар – состояние вещества при температуре ниже критической, когда у пара есть возможность превратиться в жидкость.

Состояние вещества при температуре выше критической называется газом; при температуре ниже критической, когда у пара есть возможность превратиться в жидкость, - паром.

Насыщенный пар – пар, находящийся в динамическом равновесии со своей жидкостью.

Если пар постепенно сжимают при постоянной температуре, а превращение его в жидкость не происходит, то такой пар называют насыщенным

Давление насыщенного пара – давление pн.п. пара, при котором жидкость находится в равновесии со своим паром.

Газовые законы для насыщенного пара несправедливы. В то же время состояние насыщенного пара достаточно точно описывается уравнением Менделеева-Клапейрона.

Свойства насыщенного и ненасыщенного пара различны.

Так как давление насыщенного пара не зависит от объёма, то, следовательно, оно зависит только от температуры.

Однако эта зависимость, найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объёме. С увеличением температуры давление реального насыщенного пара растёт быстрее, чем давление идеального газа.

Критическая температура – максимальная температура, при которой пар еще может превратиться в жидкость.

Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объёма при постоянной температуре) изменяется масса пара.

Абсолютная влажность – плотность водяного пара в воздухе.

Относительная влажность – отношение парциального давления p водяного пара, содержащегося в воздухе при данной температуре, к давлению pн.п. насыщенного пара при той же температуре, выраженное в процентах:

Парциальное давление водяного пара – давление, которое производил бы водяной пар, если бы все остальные газы отсутствовали.

Точка росы – температура, при которой водяной пар становится насыщенным.

Гигрометр, психрометр – приборы для измерения влажности воздуха.

Каковы главные особенности в строении жидкости и твердого тела, которые отражаются на различии их физических свойств. Главными признаками при сравнении жидкости и твердого тела являются упорядоченность в расположении частиц и расстояния между ними.

В разных условиях одни и те же вещества могут находиться в разных агрегатных состояниях: газообразном, жидком и твердом состояниях. При этом одни и те же молекулы одного и того же вещества по-разному движутся и взаимодействуют друг с другом.

По современным представлениям в жидкости молекулы колеблются относительно некоторой точки равновесия и время от времени совершают скачкообразное движение, покидая своих соседей. Такое движение молекул объясняет известное свойство жидкости, как текучесть, способность жидкости принимать форму сосуда, в котором она содержится. При соблюдается некоторый «ближний» порядок в расположении молекул.

В модели кристаллов молекулы совершают только колебательные движения около точек, которые называются узлами кристаллической решетки.

Кристаллическая решетка – это упорядоченное расположение упорядоченное расположение определенных точках пространства.

Таким образом в расположении частиц твердого тела соблюдается не только ближний, но и «дальний» порядок, распространяющийся по всем направлениям кристалла.

Фаза – это равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний. Переход от одной фазы вещества к другой сопровождается изменением внутренней энергии системы.

Одно и то же вещество в твёрдом и жидком состояниях может иметь по нескольку различных фаз.

Твердые тела характеризуются высокой механической прочностью.

По сравнению с твердыми телами жидкости характеризуются большой подвижностью молекул, и как следствие, меньшей упорядоченностью молекул и их слабым взаимодействием.

Кроме кристаллов к твёрдым телам относя аморфные и жидкие кристаллы.

Аморфные тела – это твёрдые тела, в которых соблюдается только ближний порядок в расположении частиц и отсутствует определенная температура плавления. ряд явлений, присущих только жидкому состоянию вещества.

Среди свойств жидкости особую роль играют такие свойства, как поверхностное натяжение и смачивание. Молекулы поверхностного слоя жидкости находятся в условиях, отличающихся от условий существования молекул внутри её объёма.

На каждую молекулу поверхностного слоя действует результирующая сила со стороны остальных молекул, направленная вовнутрь жидкости. Таким образом, жидкость как будто находится под натянутой пленкой.

Поэтому, если жидкость оказывается без стенок сосуда и в условиях невесомости, то она приобретает форму с мини минимальной площадью поверхности, т.е. шара.

Среди свойств жидкости особую роль играют такие свойства, как поверхностное натяжение и смачивание.

При увеличении площади поверхности жидкости на некоторую величину внешними силами совершается работа.

Отношение этой работы к изменению площади поверхности называется коэффициентом поверхностного натяжения

На рисунке изображена проволочная рамка с одной подвижной стороной, на которую «натянута» мыльная плёнка.

Прикладывая внешнюю силу можно растягивать эту пленку, совершая работу против силы поверхностного натяжения.

Из формулы для работы внешних сил найдём

,

откуда

Учитывая тот факт, что у мыльной пленки две поверхности натяжения,

получим ещё одну формулу для коэффициента поверхностного натяжения жидкости

Коэффициент поверхностного натяжения равен силе, действующей со стороны поверхности жидкости на единицу длины контура (границы) поверхности и стремящейся уменьшить площадь этой поверхности.

Рассмотрим границу между жидкой и твердой фазой на примере жидкости в цилиндрическом сосуде.

Твердое тело – стенка сосуда. Влиянием газовой фазы пренебрегаем. Если молекулы жидкости, находящиеся вблизи границы Т-Ж( твёрдое тело – жидкость) на ее свободной поверхности, притягиваются к твердому телу сильнее, чем к жидкости, то они «вытягивается» из жидкости в сторону твердого тела, т.е. увеличивается площадь границы Т-Ж. И наоборот. Если силы притяжения молекул из граничной области к жидкой фазе больше, чем к твердой, то площадь границы Т-Ж стремится к уменьшению. Получающийся на границе угол края жидкости к твердому телу называется углом смачивания.

Если этот угол меньше 900, говорят имеет место смачивание; если – больше 900, несмачивание. Если угол равен 00 , то такое явление называется растеканием (говоря другими словами - очень хорошее смачивание).

Поверхностное натяжение и смачивание является причиной такого явления как капиллярность - необычного поведения жидкостей в тонких трубках (капиллярах) и узких щелях.

В зависимости от смачивания или несмачивания жидкость в капиллярах может иметь высоту подъёма больше или меньше уровня свободной поверхности жидкости в большом сосуде. Формула высоты уровня жидкости в капилляре для случая идеального смачивания имеет вид

Контрольные вопросы:

1. Кислород находится при нормальных условиях. Средняя квадратичная скорость молекул кислорода в этом случае равна ___ м/с?

2. При температуре 290 К и давлении 0,8 МПа, средняя кинетическая энергия молекул равна __________ Дж, а концентрация составляет молекул ___________ м-3.

Литература

1. Мякишев Г. Я., Буховцев Б. Б., Сотский Н.Н. Физика. 10 класс. Учебник для общеобразовательных организаций. М.: Просвещение, 2017. С. 188 – 192, 225 – 234.

 


Дата добавления: 2022-06-11; просмотров: 27; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!